Skip to main content
Log in

Effect of Powder Morphology and Chemical Distribution on Properties of Multicomponent Alloys Produced Via Powder Metallurgy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, effects of morphology and chemical distribution of powder on mechanical properties was investigated in Al0.5CoCrCuFeNi high-entropy alloys produced via powder metallurgy. At the early stages of ball-milling, Cr-deficient large powder is flattened, while Cr-rich powder is fractured to small particles because of the flattening of ductile particles and fragmentation of hard particles at initial milling stage. However, with an increase in the milling duration, the Cr atoms were more uniformly distributed throughout the powders and the powders exhibited spherical shape with smooth surface. Moreover, as the ball-milling duration increased from 36 to 96 h, the Vickers hardness and compressive yield strength also increased from 433 Hv0.5 and 1166 MPa to 525 Hv0.5 and 1739 MPa, respectively. This was attributed to the spherical powders reducing as well as forming fine and uniform microstructures in sintered alloys. Also, the elemental uniformity suppressed the formation of dendritic-unfavorable carbides.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  2. E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4, 515 (2019)

    Article  CAS  Google Scholar 

  3. S. Gorsse, M.H. Nguyen, O.N. Senkov, D.B. Miracle, Data Br. 21, 2664 (2018)

    Article  CAS  Google Scholar 

  4. R. Sriharitha, B.S. Murty, R.S. Kottada, Intermetallics 32, 119 (2013)

    Article  CAS  Google Scholar 

  5. M. Li, J. Gazquez, A. Borisevich, R. Mishra, K.M. Flores, Intermetallics 95, 110 (2018)

    Article  CAS  Google Scholar 

  6. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Metall. Mater. Trans. A 36, 881 (2005)

    Article  Google Scholar 

  7. J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Mater. Des. 180, 107910 (2019)

    Article  CAS  Google Scholar 

  8. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60, 5723 (2012)

    Article  CAS  Google Scholar 

  9. M. Vaidya, G.M. Muralikrishna, B.S. Murty, J. Mater. Res. 34, 664 (2019)

    Article  CAS  Google Scholar 

  10. W. Wang, B. Li, S. Zhai, J. Xu, Z. Niu, J. Xu, Y. Wang, Met. Mater. Int. 24, 1112 (2018)

    Article  CAS  Google Scholar 

  11. J.M. Torralba, P. Alvaredo, A. García-Junceda, Powder Metall. 62, 84 (2019)

    Article  CAS  Google Scholar 

  12. C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001)

    Article  CAS  Google Scholar 

  13. A. Raza, B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Des. 145, 11 (2018)

    Article  CAS  Google Scholar 

  14. J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Mater. Sci. Eng., A 342, 131 (2003)

    Article  Google Scholar 

  15. Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, P. Dai, Intermetallics 93, 228 (2018)

    Article  CAS  Google Scholar 

  16. R. Anand Sekhar, S. Samal, N. Nayan, S.R. Bakshi, J. Alloys Compd. 787, 123 (2019)

    Article  CAS  Google Scholar 

  17. Z. Fu, W. Chen, Z. Jiang, B.E. MacDonald, Y. Lin, F. Chen, L. Zhang, E.J. Lavernia, Powder Metall. 61, 106 (2018)

    Article  CAS  Google Scholar 

  18. T.H. Courtney, Mechanical Behavior of Materials, 2nd edn. (Waveland Press, Long Grove, 2000), pp. 181–186

    Google Scholar 

  19. S. Nam, J.Y. Hwang, J. Jeon, J. Park, D. Bae, M.J. Kim, J.-H. Kim, H. Choi, J. Mater. Res. 34, 720 (2019)

    Article  CAS  Google Scholar 

  20. J.S. Benjamin, T.E. Volin, Metall. Trans. 5, 1929 (1974)

    Article  CAS  Google Scholar 

  21. H.J. Fecht, E. Hellstern, Z. Fu, W.L. Johnson, Metall. Trans. A 21, 2333 (1990)

    Article  Google Scholar 

  22. Z.Q. Guan, T. Pfullmann, M. Oehring, R. Bormann, J. Alloys Compd. 252, 245 (1997)

    Article  CAS  Google Scholar 

  23. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988)

    Google Scholar 

  24. H.F. Sheng, M. Gong, L.M. Peng, Mater. Sci. Eng., A 567, 14 (2013)

    Article  CAS  Google Scholar 

  25. S. Nam, M.J. Kim, J.Y. Hwang, H. Choi, J. Alloys Compd. 762, 29 (2018)

    Article  CAS  Google Scholar 

  26. Ł. Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzeł, A. Tarasek, M. Kot, M. Szlezynger, Met. Mater. Int. 25, 930 (2019)

    Article  CAS  Google Scholar 

  27. P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134, 426 (2017)

    Article  CAS  Google Scholar 

  28. S. Praveen, A. Anupam, R. Tilak, R.S. Kottada, Mater. Chem. Phys. 210, 57 (2018)

    Article  CAS  Google Scholar 

  29. X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15, 357 (2007)

    Article  CAS  Google Scholar 

  30. S.S. Sohn, A. Kwiatkowski da Silva, Y. Ikeda, F. Körmann, W. Lu, W.S. Choi, B. Gault, D. Ponge, J. Neugebauer, D. Raabe, Adv. Mater. 31, 1807142 (2019)

    Article  Google Scholar 

  31. Z. Fu, W. Chen, S. Fang, D. Zhang, H. Xiao, D. Zhu, J. Alloys Compd. 553, 316 (2013)

    Article  CAS  Google Scholar 

  32. S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21, 433 (2011)

    Article  Google Scholar 

  33. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008)

    Article  CAS  Google Scholar 

  34. H.P. Klug, L. Alexander, X-ray Diffraction Procedures for Poly-Crystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974), pp. 618–708

    Google Scholar 

  35. N. Kumar, M. Komarasamy, P. Nelaturu, Z. Tang, P.K. Liaw, R.S. Mishra, JOM 67(5), 1007 (2015)

    Article  CAS  Google Scholar 

  36. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1997), pp. 183–189

    Book  Google Scholar 

  37. K. Miyake, Y. Hirata, T. Shimonosono, S. Sameshima, Materials 11, 1137 (2018)

    Article  Google Scholar 

  38. C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, E.J. Lavernia, Scr. Mater. 139, 96 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Research Foundation (NRF) of Korea and funded by Ministry of Science, ICT (MSIT; 2015R1A5A7037615), and the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (P0006837). This research was also financially supported from the Civil-Military Technology cooperation program (No. 18-CM-MA-15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Hun Kim or Hyunjoo Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, S., Shin, S.E., Kim, JH. et al. Effect of Powder Morphology and Chemical Distribution on Properties of Multicomponent Alloys Produced Via Powder Metallurgy. Met. Mater. Int. 26, 1385–1393 (2020). https://doi.org/10.1007/s12540-020-00769-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00769-8

Keywords

Navigation