Skip to main content

Advertisement

Log in

Drug–protein adducts: past, present, and future

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Research over the past half-century has demonstrated that the metabolism of drugs and other foreign compounds to chemically reactive intermediates that bind covalently to endogenous proteins can, in certain cases, lead to organ damage or to immune-mediated adverse reactions. While the chemistry of metabolic activation is now relatively well understood, the molecular events that link exposure to reactive metabolites to toxic sequalae remain ill-defined. In particular, the role of covalent protein binding in drug-induced toxicities is unclear, and has been a controversial issue in drug discovery efforts. In this article, the covalent binding of drugs and other xenobiotics to proteins is reviewed from a historical perspective, and the evolution of the field is traced from an early dependence on radiolabeled tracers that provided limited information on adduct structure to contemporary label-free approaches based on powerful chemical proteomics and mass spectrometry methodology that provide a global perspective on proteome reactivity. Currently evolving databases of the proteins targeted by safe and toxic xenobiotics likely will lead in the future to predictive algorithms that can be exploited by medicinal chemists to assist in the design of safe therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam J, Eriksson KK, Schnyder B, Fontana S, Pichler WJ, Yerly D (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42:1706–1716

    Article  CAS  PubMed  Google Scholar 

  • Axworthy DB, Hoffmann K-J, Streeter AJ, Calleman CJ, Pascoe GA, Baillie TA (1988) Covalent binding of acetaminophen to mouse hemoglobin. Identification of major and minor adducts formed in vivo and implications for the nature of the arylating metabolites. Chemico-Biol Interact 68:99–116

    Article  CAS  Google Scholar 

  • Baillie TA, Rettie AE (2011) Role of biotransformation in drug-induced toxicity: Influence of intra- and inter-species differences in drug metabolism. Drug Metab Pharmacokinet 26:15–29

    Article  CAS  PubMed  Google Scholar 

  • Baillie TA (2016a) Chemically reactive versus stable drug metabolites: role in adverse drug reactions. In: Wilson AGE (Ed.) New horizons in drug metabolism and pharmacokinetics. RSC Drug Discovery Series No. 49, Royal Society of Chemistry, London, pp 202–226

    Google Scholar 

  • Baillie TA (2016b) Targeted covalent inhibitors for drug design. Angew Chem Int Ed 55:13408–13421

    Article  CAS  Google Scholar 

  • Bambal RB, Hanzlik RP (1995) Bromobenzene 3,4-oxide alkylates histidine and lysine side chains of rat liver proteins in vivo. Chem Res Toxicol 8:729–735

    Article  CAS  PubMed  Google Scholar 

  • Bolton JL, Dunlap T (2017) Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol 30:13–37

    Article  CAS  PubMed  Google Scholar 

  • Brink A, Pähler A, Funk C, Schuler F, Schadt S (2017) Minimizing the risk of chemically reactive metabolite formation of new drug candidates: implications for preclinical drug design. Drug Discov Today 22:751–756

    Article  CAS  PubMed  Google Scholar 

  • Brodie BB, Reid WD, Cho AK, Sipes G, Krishna G, Gillette JR (1971) Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc Natl Acad Sci USA 68:160–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calder IC, Hart SJ, Healey K (1981) N-Hydroxyacetaminophen: a postulated toxic metabolite of acetaminophen. J Med Chem 24:988–993

    Article  CAS  PubMed  Google Scholar 

  • Chan JCY, Soh ACK, Kioh DYQ, Li J, Verma C, Koh SK, Beuerman RW, Zhou L, Chan ECY (2018) Reactive metabolite-induced protein glutathionylation: a potentially novel mechanism underlying acetaminophen hepatotoxicity. Mol Cell Proteom 17:2034–2050

    Article  CAS  Google Scholar 

  • Cho T, Uetrecht J (2017) How reactive metabolites induce an immune response that sometimes leads to an idiosyncratic drug reaction. Chem Res Toxicol 30:295–314

    Article  CAS  PubMed  Google Scholar 

  • Cohen SD, Pumford NR, Khairallah EA, Boekelheide K, Pohl LR, Amouzadeh HR, Hinson JA (1997) Selective covalent protein binding and target organ toxicity. Toxicol Appl Pharmacol 143:1–12

    Article  CAS  PubMed  Google Scholar 

  • Copple IM, Goldring CE, Jenkins RE, Chia AJL, Randle LE, Hayes JD, Kitteringham NR, Park BK (2008) The hepatotoxic metabolite of acetaminophen directly activates the Keap-1-Nrf2 cell defense system. Hepatology 48:1292–1300

    Article  CAS  PubMed  Google Scholar 

  • Dahlin DC, Miwa GT, Lu AYH, Nelson SD (1984) N-Acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81:1327–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietze EC, Schafer A, Omichinski JG, Nelson SD (1997) Inactivation of glyceraldehyde-3-phosphate dehydrogenase by a reactive metabolite of acetaminophen and mass spectral characterization of the arylated active site peptide. Chem Res Toxicol 10:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Evans EE, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT, Witowski SR, Lounsbury H, Chaturvedi P, Mazdiyasni H, Zhu Z, Nacht M, Freed MI, Petter RC, Dubrovskiy, Singh J, Westlin WF (2013) Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J Pharmacol Exp Ther 346:219–228

    Article  CAS  PubMed  Google Scholar 

  • Evans DC, Watt AP, Nicoll-Griffith BTA (2004) Drug-protein adducts: An industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–16

    Article  CAS  PubMed  Google Scholar 

  • Gehringer M, Laufer S (2018) Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem 62:5673–5724

    Article  CAS  Google Scholar 

  • Hanzlik RP, Fang J, Koen YM (2009) Filling and mining the reactive metabolite target protein database. Chemico-Biol Interact 179:38–44

    Article  CAS  Google Scholar 

  • Hanzlik RP, Koen YM, Fang J (2013) Bioinformatic analysis of 302 reactive metabolite target proteins. Which ones are important for cell death? Toxicol Sci 135:390–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinson JA, Pumford NR, Nelson SD (1994) The role of metabolic activation in drug toxicity. Drug Metab Rev 26:395–412

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann KJ, Streeter AJ, Axworthy DB, Baillie TA (1985) Identification of the major covalent adduct formed in vitro and in vivo between acetaminophen and mouse liver proteins. Mol Pharm 27:566–573

    CAS  Google Scholar 

  • Huang Z, Ogasawara D, Senevirante UI, Cognetta AB, am Ende CW, Nason DM, Lapham K, Litchfield J, Johnson DS, Cravatt BF (2019) Global portrait of protein targets of metabolites of the neurotoxic compound BIA 10-2474. ACS Chem Biol 14:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins RE, Yaseen FS, Monshi MM, Whitaker P, Meng X, Farrell J, Hamlett J, Sanderson JP, El-Ghaiesh S, Peckham D, Pirmohamed M, Park BK, Naisbitt DJ (2013) β-Lactam antibiotics form distinct haptenic structures on albumin and activate drug-specific T-lymphocyte responses in multiallergic patients with cystic fibrosis. Chem Res Toxicol 26:963–975

    Article  CAS  PubMed  Google Scholar 

  • Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187:195–202

    CAS  PubMed  Google Scholar 

  • Kakutani N, Nanayama T, Nomura Y (2019) Novel risk assessment of reactive metabolites from discovery to clinical stage. J Toxicol Sci 44:201–211

    Article  CAS  PubMed  Google Scholar 

  • Kalgutkar AS (2020) Designing around structural alerts in drug discovery. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b00917

  • Klopcic I, Dolenc MS (2019) Chemicals and drugs forming reactive quinone and quinone imine metabolites. Chem Res Toxicol 32:1–34

    Article  CAS  PubMed  Google Scholar 

  • Koen YM, Williams TD, Hanzlik RP (2000) Identification of three protein targets for reactive metabolites of bromobenzene in rat liver cytosol. Chem Res Toxicol 13:1326–1335

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Miller RM, Tian B, Mullins RD, Jacobson MP, Taunton J (2014) Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J Am Chem Soc 136:12624–12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, Johnson TO, Joslyn C, Kath JC, Niessen S, Roberts LR, Schnute ME, Wang C, Hulce JJ, Wei B, Whiteley LO, Hayward MM, Cravatt BF (2014) A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol 10:760–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Earnshaw CJ, Tailor A, Jenkins RE, Waddington JC, Whitaker P, French NS, Naisbitt DJ, Park BK (2016) Amoxicillin and clavulanate form chemically and immunologically distinct multiple haptenic structures in patients. Chem Res Toxicol 29:1762–1772

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Lawrenson AS, Berry NG, Maggs JL, French NS, Back DJ, Khoo SH, Naisbitt DJ, Park BK (2014) Abacavir forms novel cross-linking abacavir protein adducts in patients. Chem Res Toxicol 27:524–535

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yerly D, Naisbitt DJ (2018) Mechanisms leading to T-cell activation in drug hypersensitivity. Curr Opin Allergy Clin Immunol 18:317–324

    Article  CAS  PubMed  Google Scholar 

  • Miller EC, Miller JA (1947) The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene. Cancer Res 7:468–480

    CAS  Google Scholar 

  • Miller EC, Miller JA (1966) Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules. Pharmacol Rev 18:805–838

    CAS  PubMed  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973a) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187:185–194

    CAS  PubMed  Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973b) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217

    CAS  PubMed  Google Scholar 

  • Mitchell JR, Nelson SD, Thorgeirsson SS, McMurty RJ, Dybing E (1976) Metabolic activation: biochemical basis for many drug-induced liver injuries. Prog Liver Dis 5:259–279

    CAS  PubMed  Google Scholar 

  • Nelson SD, Pearson PG (1990) Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol 30:169–195

    Article  CAS  PubMed  Google Scholar 

  • Niessen S, Dix MM, Barbas, Potter ZE, Lu S, Brodsky O, Planken S, Behenna D, Almaden C, Gajiwala KS, Ryan K, Ferre R, Lazear MR, Hayward MM, Kath JC, Cravatt BF (2017) Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chem Biol 24:1388–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr STM, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, Sun H, Kalgutkar AS (2012) Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J Med Chem 55:4896–4933

    Article  CAS  PubMed  Google Scholar 

  • Pascoe GA, Calleman CJ, Baillie TA (1988) Identification of S-(2,5-dihydroxyphenyl)-cysteine and S-(2,5-dihydroxyphenyl)-N-acetyl-cysteine as urinary metabolites of acetaminophen in the mouse. Evidence for p-benzoquinone as a reactive intermediate in acetaminophen metabolism. Chemico-Biol Interact 68:85–98

    Article  CAS  Google Scholar 

  • Potashman MH, Duggan ME (2009) Covalent modifiers: an orthogonal approach to drug design. J Med Chem 52:1231–1246

    Article  CAS  PubMed  Google Scholar 

  • Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J Pharmacol Exp Ther 187:203–210

    CAS  PubMed  Google Scholar 

  • Pumford NR, Halmes NC, Hinson JA (1997) Covalent binding of xenobiotics to specific proteins in the liver. Drug Metab Rev 29:39–57

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Benet LZ, Burlingame AL (1998) Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 273:17940–17953

    Article  CAS  PubMed  Google Scholar 

  • Rombach EM, Hanzlik RP (1998) Identification of a rat liver microsomal esterase as a target protein for bromobenzene metabolites. Chem Res Toxicol 11:178–184

    Article  CAS  PubMed  Google Scholar 

  • Sabbioni G, Turesky RJ (2017) Biomonitoring human albumin adducts: The past, the present, and the future. Chem Res Toxicol 30:332–366

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Martin BM, Schulick AH, Christ DD, Kenna JG, Pohl LR (1989) Human anti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a trifluoroacetylated carboxylesterase. Proc Natl Acad Sci USA 86:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Petter RC, Baillie TA, Whitty A (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10:307–317

    Article  CAS  PubMed  Google Scholar 

  • Slaughter DE, Hanzlik RP (1991) Identification of epoxide- and quinone-derived bromobenzene adducts to protein sulfur nucleophiles. Chem Res Toxicol 4:349–359

    Article  CAS  PubMed  Google Scholar 

  • Slaughter DE, Zheng J, Harriman S, Hanzlik RP (1993) Identification of covalent adducts to protein sulfur nucleophiles by alkaline permethylation. Anal Biochem 208:288–295

    Article  CAS  PubMed  Google Scholar 

  • Speers AE, Adam GC, Cravatt BF (2003) Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:4686–4687

    Article  CAS  PubMed  Google Scholar 

  • Stachulski AV, Baillie TA, Park BK, Obach RS, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS (2013) The generation, detection, and effects of reactive drug metabolites. Med Res Rev 33:985–1080

    Article  CAS  PubMed  Google Scholar 

  • Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD (2011) Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic toxicity: A perspective based on the critical examination of trends in the top 200 drug marketed in the United States. Chem Res Toxicol 24:1345–1410

    Article  CAS  PubMed  Google Scholar 

  • Streeter AJ, Bjorge SM, Axworthy DB, Nelson SD, Baillie TA (1984b) Microsomal metabolism and site of covalent binding to protein of 3’-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen. Drug Metab Dispos 12:565–576

    CAS  PubMed  Google Scholar 

  • Streeter AJ, Dahlin DC, Nelson SD, Baillie TA (1984a) The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro. Chemico-Biol Interact 48:349–366

    Article  CAS  Google Scholar 

  • Tailor A, Waddington JC, Hamlett J, Maggs J, Kafu L, Farrell J, Dear GJ, Whitaker P, Naisbitt DJ, Park K, Meng X (2019) Definition of haptens derived from sulfamethoxazole: in vitro and in vivo. Chem Res Toxicol 32:2095–2106

    Article  CAS  PubMed  Google Scholar 

  • Tailor A, Waddington JC, Meng X, Park BK (2016) Mass spectrometric and functional aspects of drug-protein conjugation. Chem Res Toxicol 29:1912–1935

    Article  CAS  PubMed  Google Scholar 

  • Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP (2016) Reactive metabolites: current and emerging risk and hazard assessments. Chem Res Toxicol 29:505–533

    Article  CAS  PubMed  Google Scholar 

  • Weller PE, Hanzlik RP (1991) Isolation of S-(bromophenyl)cysteine isomers from liver proteins of bromobenzene-treated rats. Chem Res Toxicol 4:17–20

    Article  CAS  PubMed  Google Scholar 

  • Whitby LR, Obach RS, Simon GM, Hayward MM, Cravatt BF (2017) Quantitative chemical proteomic profiling of the in vivo targets of reactive drug metabolites. ACS Chem Biol 12:2040–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley RA, Hanzlik RP, Gillesse T (1979) Effect of substituents on in vitro metabolism and covalent binding of substituted bromobenzenes. Toxicol Appl Pharmacol 49:249–255

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shu Y-Z, Humphreys WG (2016) Label-free bottom-up proteomic workflow for simultaneously assessing the target specificity of covalent drug candidates and their off-target reactivity to selected proteins. Chem Res Toxicol 29:109–116

    Article  CAS  PubMed  Google Scholar 

  • Yip VLM, Meng X, Maggs JL, Jenkins RE, Marlot PT, Marson AG, Park BK, Pirmohamed M (2017) Mass spectrometric characterization of circulating protein adducts from epoxide metabolites of carbamazepine in patients. Chem Res Toxicol 30:1419–1435

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Baillie.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

This article is dedicated to Professor Robert P Hanzlik on the occasion of his retirement after 49 years of research, teaching and service at the University of Kansas

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baillie, T.A. Drug–protein adducts: past, present, and future. Med Chem Res 29, 1093–1104 (2020). https://doi.org/10.1007/s00044-020-02567-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02567-8

Keywords

Navigation