Skip to main content

Advertisement

Log in

Nitrogen and sulfur dual-doped porous carbon derived from coffee waste and cysteine for electrochemical energy storage

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

N/S dual-doped carbon materials were synthesized from coffee waste and cysteine for use as porous carbon electrode materials for electric double layer capacitors. The capacitance of the carbon materials was calculated from the experimental results of cyclic voltammetry and galvanostatic charge-discharge tests. The N/S-doped carbon materials obtained from heat-treatment with cysteine exhibited a higher discharge capacitance, 71.3 F/g, than that of the carbon without the cysteine treatment, 43.8 F/g, at 1 A/g. This is because the N/S dual-doped carbons possess a higher wettability than that of the other carbon material, even though the N/S doping with cysteine destroys the porous carbon structure, which reduces the BET surface area of the carbon samples. Elemental analysis was performed to determine the portions of nitrogen and sulfur elements doped into the carbon. From the XPS results, various states of nitrogen and sulfur elements were identified, and SEM/TEM images were obtained to observe their morphologies and porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).

    Article  CAS  Google Scholar 

  2. M. D. Stoller and R. S. Ruoff, J. Energy Environ. Sci., 3, 1294 (2010).

    Article  CAS  Google Scholar 

  3. L. Hao, X. Li and L. Zhi, Adv. Mater., 25, 3899 (2013).

    Article  CAS  Google Scholar 

  4. B. E. Conway, Electrochemical supercapacitors: Scientific fundamentals and technological applications, Plenum Press, New York (1999).

    Book  Google Scholar 

  5. P. Simon and Y. Gogotsi, Nat. Mater., 7, 845 (2008).

    Article  CAS  Google Scholar 

  6. Y.-J. Kim, B.-J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K. C. Park and M. Endo, Carbon, 44, 1592 (2006).

    Article  CAS  Google Scholar 

  7. W. Lee, M. Kwon, S. Park, D. Lim, J.-H. Cha and H. Lee, Chem.- Asian J., 8, 1569 (2013).

    Article  CAS  Google Scholar 

  8. K. S. Lee, M. Park, S. Choi and J.-D. Kim, Colloids Surf. A: Physicochem. Eng. Aspects, 529, 107 (2017).

    Article  CAS  Google Scholar 

  9. S. H. Kwon, E. Lee, B.-S. Kim, S.-G. Kim, B.-J. Lee, M.-S. Kim and J. C. Jung, Korean J. Chem. Eng., 32, 248 (2015).

    Article  CAS  Google Scholar 

  10. I. Yang, D. Kwon, M.-S. Kim and J. C. Jung, Carbon, 132, 503 (2018).

    Article  CAS  Google Scholar 

  11. N. M. Shinde, A. D. Jagadale, V. S. Kumbhar, T. R. Rana, J. Kim and C. D. Lokhande, Korean J. Chem. Eng., 32, 974 (2015).

    Article  CAS  Google Scholar 

  12. N. Venugopal and W.-S. Kim, Korean J. Chem. Eng., 32, 1918 (2015).

    Article  CAS  Google Scholar 

  13. W.-J. Lee, S. Jeong, H. Lee, B.-J. Kim, K.-H. An, Y.-K. Park and S.-C. Jung, Korean J. Chem. Eng., 34, 2993 (2017).

    Article  CAS  Google Scholar 

  14. J. Banerjee, K. Dutta, M. A. Kader and S. K. Nayak, Polym. Adv. Technol., 30, 1902 (2019).

    Article  CAS  Google Scholar 

  15. Y. Tian, C. Yang, X. Song, J. Liu, L. Zhao, P. Zhang and L. Gao, Chem. Eng. J., 374, 59 (2019).

    Article  CAS  Google Scholar 

  16. J. P. Paraknowitsch and A. Thomas, J. Energy Environ. Sci., 6, 2839 (2013).

    Article  CAS  Google Scholar 

  17. Y. Kim, W. Lee, G. M. Kim and J. W. Lee, RSC Adv., 6, 54889 (2016).

    Article  CAS  Google Scholar 

  18. W. Lee, G. M. Kim, S. Baik and J. W. Lee, Electrochim. Acta, 210, 743 (2016).

    Article  CAS  Google Scholar 

  19. A. Byeon, W. Lee, G. M. Kim and J. W. Lee, J. CO2Util., 16, 420 (2016).

    Article  CAS  Google Scholar 

  20. Z. Yang, L. Xie, Y. Chen, T. Xue, B. Ma, K. Zhang, J. Zhao and J. Wei, Appl. Surf. Sci., 493, 1205 (2019).

    Article  CAS  Google Scholar 

  21. Y. S. Yun, M. H. Park, S. J. Hong, M. E. Lee, Y. W. Park and H.-J. Jin, ACS Appl. Mater. Interfaces, 7, 3684 (2015).

    Article  CAS  Google Scholar 

  22. S. M. Unni, L. George, S. N. Bhange, R. N. Devi and S. Kurungot, RSC Adv., 6, 82103 (2016).

    Article  CAS  Google Scholar 

  23. D. Y. Chung, Y. J. Son, J. M. Yoo, J. S. Kang, C.-Y. Ahn, S. Park, Y.-E. Sung, ACS Appl. Mater. Interfaces, 9, 41303 (2017).

    Article  CAS  Google Scholar 

  24. L. Jiang, L. Sheng and Z. Fan, Sci. China Mater., 61, 133 (2018).

    Article  CAS  Google Scholar 

  25. A. Srinu, S. G. Peera, V. Parthiban, B. Bhuvaneshwari and A. K. Sahu, Chem Select, 3, 690 (2018).

    CAS  Google Scholar 

  26. I. I. Misnon, N. K. M. Zain and R. Jose, Waste Biomass Valoriz., 10, 1731 (2019).

    Article  CAS  Google Scholar 

  27. R. Campos-Vega, G. Loarca-Piña, H.A. Vergara-Castañeda, B. D. Oomah, Trends Food Sci. Technol., 45, 24 (2015).

    Article  CAS  Google Scholar 

  28. J. Zhang, Z. Xia and L. Dai, Sci. Adv., 1, e1500564 (2015).

    Article  Google Scholar 

  29. S. Niu, W. Lv, G. Zhou, Y. He, B. Li, Q.-H. Yang and F. Kang, Chem. Commun., 51, 17720 (2015).

    Article  CAS  Google Scholar 

  30. H. Zhang, Y. Niu and W. Hu, J. Colloid Interface Sci., 505, 32 (2017).

    Article  CAS  Google Scholar 

  31. Z.-S. Wu, W. Ren, L. Xu, F. Li and H.-M. Cheng, ACS Nano, 5, 5463 (2011).

    Article  CAS  Google Scholar 

  32. J. Liu, C. K. Poh, D. Zhan, L. Lai, S. H. Lim, L. Wang, X. Liu, N. G. Sahoo, C. Li, Z. Shen and J. Lin, Nano Energy, 2, 377 (2013).

    Article  CAS  Google Scholar 

  33. J. Wu, Z. Pan, Y. Zhang, B. Wang and H. Peng, J. Mater. Chem. A, 6, 12932 (2018).

    Article  CAS  Google Scholar 

  34. W. Kiciński, M. Szala and M. Bystrzejewski, Carbon, 68, 1 (2014).

    Article  Google Scholar 

  35. J. Yan, Q. Wang, T. Wei and Z. Fan, Adv. Energy Mater., 4, 1300816 (2014).

    Article  Google Scholar 

  36. T. Wang, P. Zhang, Y. Sun, B. Liu, Y. Liu, Z.-A. Qiao, Q. Huo and S. Dai, Chem. Mater., 29, 4044 (2017).

    Article  CAS  Google Scholar 

  37. T. Wang, Y. Sun, L. Zhang, K. Li, Y. Yi, S. Song, M. Li, Z.-A. Qiao and S. Dai, Adv. Mater., 31, 1807876 (2019).

    Article  Google Scholar 

  38. B. Quan, S.-H. Yu, D. Y. Chung, A. Jin, J. H. Park, Y.-E. Sung and Y. Piao, Sci. Rep., 4, 5639 (2014).

    Article  CAS  Google Scholar 

  39. C. Kim, J.-W. Lee, J.-H. Kim and K.-S. Yang, Korean J. Chem. Eng., 23, 592 (2006).

    Article  CAS  Google Scholar 

  40. D. Yuan, J. Chen, J. Zeng and S. Tan, Electrochem. Commun., 10, 1067 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20182010202100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinwon Park or Wonhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Kim, H., Lee, J.E. et al. Nitrogen and sulfur dual-doped porous carbon derived from coffee waste and cysteine for electrochemical energy storage. Korean J. Chem. Eng. 37, 1218–1225 (2020). https://doi.org/10.1007/s11814-020-0544-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0544-z

Keywords

Navigation