Skip to main content
Log in

A Novel Approach to Determine In-Flight Particle Oxidation for Thermal Spraying Processes

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A careful substrate preparation and the physical properties of the coating particles are decisive for the quality and envisaged properties of the deposited layer. Temperature, size, rate and velocity represent the classical quantities, which can be measured in situ using various diagnostics. Nonetheless, another quality-determining parameter is the degree of oxidation which could not be measured in situ (up to now) by established diagnostics and must therefore be qualitatively derived from the above-mentioned quantities or subsequently be measured by means of destructive methods. Within this work, a diagnostic approach to determine in-flight particle oxidation has been outlined and tested. The presented measurement method detects the entire particle plume from different directions using a 2D two-color pyrometry and allows for the calculation of spatially resolved 3D temperature and intensity distributions based on a tomographic evaluation method. By additionally using measurements of the particle velocities and particle sizes, the surface emissivity of the particles along the spraying direction can be calculated, which in turn allows quantitative conclusions on the degree of particle oxidation. Investigations on the wire arc spraying process have shown that particle oxidation degrees could be determined and tend to correlate well with oxide contents in finished coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

λ :

Wavelength

\(T\) :

Particle temperature

ε(λ, T):

Emissivity

\(M_{{\lambda {\text{s}}}} \left( {\lambda , T} \right)\) :

Spectral exitance, a function of wavelength and particle temperature

\(Q\left( T \right)\) :

Quotient for temperature calculation

\(K = \frac{hc}{{k_{T} }}\) :

Constant (Planck’s constant times speed of light divided by Boltzmann constant)

\(I_{{i,{\text{tot}}}}\) :

(Total) intensity registered by the ith camera

\(i\) :

Integer value describing the camera number (1 or 2)

\(p\left( {\phi , a} \right)\) :

Projection value

\(f\left( {x,y} \right)\) :

Spatial distribution function

\(L_{\phi ,a}\) :

Integration straight for the radon transformation

\(a\) :

Angle number, i.e., the number of projections

\(\phi\) :

Projection angle

\(\Delta \phi\) :

Angle step at which tomographic projections are acquired

\(A_{ \bot , k}\) :

Luminous surface of a kth particle

\(t_{C, k}\) :

Dwell time in an observation cross section as defined in Ref 1

\(N\) :

Amount of particles flying through an observation cross section

\(B_{i}\) :

Calibration factor

\(\lambda_{s,e}\) :

Initial and final wavelength of the integration of \(I_{{i,{\text{tot}}}}\)

\(q_{\text{e}}\) :

Quantum efficiency of the detector

\(f_{i}\) :

Transmission function of a spectral filter

\(v_{\text{W}}\) :

Wire feed rate

\(r_{\text{W}}\) :

Wire radius

\(r_{\text{P}}\) :

Particle radius

\(t_{ \exp }\) :

Exposure time of the detector

\(l_{C}\) :

Edge length of a pixel in the image plane

\(v_{\text{lamp}}\) :

Velocity of the calibration lamp movement across the detector

\(C_{\text{oxide}}\) :

Oxide content of particles in flight

\(v_{P, z}\) :

Particle velocity along the spraying direction, defined as z-axis

References

  1. S. Kirner, Tomographic Two-Color-Pyrometry of the Wire Arc Spray Process regarding Particle Temperature and in-flight Particle Oxidation, Ph.D. Thesis, Faculty of Plasma Technology and Basics of Electrical Engineering, Bundeswehr University Munich, Neubiberg, 2018

  2. M.-M. Matz and M. Aumiller, Practical Comparison of Cylindrical Nozzle and De Laval Nozzle for Wire Arc Spraying, J. Therm. Spray Technol., 2014, 23(8), p 1470-1477

    Article  CAS  Google Scholar 

  3. E. Hämäläinen et al., Imaging Diagnostics in Thermal Spraying-SprayWatch System, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., Montréal, ASM International, 2000

    Google Scholar 

  4. J. Vattulainen et al., Novel Method for In-Flight Particle Temperature and Velocity Measurements in Plasma Spraying Using a Single CCD Camera, J. Therm. Spray Technol., 2001, 10(1), p 94-104

    Article  CAS  Google Scholar 

  5. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    Article  CAS  Google Scholar 

  6. C. Moreau et al., Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure Appl. Chem., 2005, 77(2), p 443-462

    Article  CAS  Google Scholar 

  7. G.E. Elsinga et al., Tomographic 3D-PIV and Applications, Particle Image Velocimetry Top. Appl. Phys., 2007, 112, p 103-125

    Article  Google Scholar 

  8. S. Kirner, G. Forster, and J. Schein, Tomographic Particle Localization and Velocity Measurement, J. Therm. Spray Technol., 2015, 24(1-2), p 38-45

    Google Scholar 

  9. J.R. Fincke, W.D. Swank, and C.L. Jeffery, Simultaneous Measurement of Particle Size, Velocity and Temperature in Thermal Plasmas, IEEE Trans. Plasma Sci., 1990, 18(6), p 948-957

    Article  CAS  Google Scholar 

  10. J. Hlína and J. Šonský, Time-Resolved Tomographic Measurements of Temperatures in a Thermal Plasma Jet, J. Phys. D Appl. Phys., 2010, 43(5), p 55202

    Article  CAS  Google Scholar 

  11. J. Schein et al., Tomographic Investigation of Plasma Jets Produced by Multielectrode Plasma Torches, J. Therm. Spray Technol., 2008, 17(3), p 338-343

    Article  CAS  Google Scholar 

  12. J.R. Fincke, D.C. Haggard, and W.D. Swank, Particle Temperature Measurement in the Thermal Spray Process, J. Therm. Spray Technol., 2001, 10(2), p 255-266

    Article  Google Scholar 

  13. T. Streibl, T. Duda and K. Landes, Diagnostics of Thermal Spray Processes By In-Flight Measurement of Particle Size and Shape with Innovative Particle-Shape-Imaging (PSI) Technique, in Proc. SPIE 4308, High-Speed Imaging and Sequence Analysis III, 2001

  14. F. Durst, A. Melling, and J.H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry, Academic Press, New York, 1976

    Google Scholar 

  15. A.P. Newbery and P.S. Grant, Oxidation During Electric Arc Spray Forming of Steel, J. Mater. Process. Technol., 2006, 178(1), p 259-269

    Article  CAS  Google Scholar 

  16. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, Oxidation in Wire HVOF-Sprayed Steel, J. Therm. Spray Technol., 1998, 7(4), p 537-545

    Article  CAS  Google Scholar 

  17. K. Voleník et al., Properties of Alloy Steel Coatings Oxidized During Plasma Spraying, Mater. Sci. Eng., A, 1997, 234-236, p 493-496

    Article  Google Scholar 

  18. S. Deshpande, S. Sampath, and H. Zhang, Mechanisms of Oxidation and Its Role in Microstructural Evolution of Metallic Thermal Spray Coatings—Case Study for Ni-Al, Surf. Coat. Technol., 2006, 200(18-19), p 5395-5406

    Article  CAS  Google Scholar 

  19. G. Espie et al., In-Flight Oxidation of Iron Particles Sprayed Using Gas and Water Stabilized Plasma Torch, Surf. Coat. Technol., 2005, 195(1), p 17-28

    Article  CAS  Google Scholar 

  20. J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Cleveland, 2004

    Google Scholar 

  21. X. Wang et al., Effect of Nozzle Configuration, Gas Pressure, Gas Type on Coating Properties in Wire Arc Spray, J. Therm. Spray Technol., 1999, 8(4), p 565-575

    Article  Google Scholar 

  22. S. Hoile et al., Oxide Formation in the Sprayform Tool Process, Mater. Sci. Eng., A, 2004, 383(1), p 50-57

    Article  CAS  Google Scholar 

  23. L. Michalski et al., Temperature Measurement, 2nd ed., Wiley, Hoboken, 2004

    Google Scholar 

  24. Z. Zhou et al., 3-D Reconstruction of Flame Temperature Distribution Using Tomographic and Two-Color Pyrometric Techniques, IEEE Trans. Instrum. Meas., 2015, 64(11), p 3075-3084

    Article  Google Scholar 

  25. T.M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, Berlin, 2008

    Google Scholar 

  26. A. Fridman, Plasma Chemistry, Cambridge University Press, Cambridge, 2008

    Book  Google Scholar 

  27. A. Fridman and L. Kennedy, Plasma Physics and Engineering, Taylor & Francis, Milton Park, 2004

    Book  Google Scholar 

  28. M. Szulc et al., A Method to Estimate the Optical Thickness of an Opaque Stream of Particles Based on Particle Rate, Size and Velocity Measurements as a Necessity to Enable Tomographic Analysis, J. Therm. Spray Technol., 2019, 28, p 1627-1635

    Article  Google Scholar 

  29. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 1917, 69, p 262-277

    Google Scholar 

  30. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin International de l’Academie Polonaise des Sciences et des Lettres, 1937, 35, p 355-357

    Google Scholar 

  31. G. Jandin et al., Correlations Between Operating Conditions, Microstructure and Mechanical Properties of Twin Wire Arc Sprayed Steel Coatings, Mater. Sci. Eng., A, 2003, 349(1), p 298-305

    Article  Google Scholar 

  32. M.P. Planche, H. Liao, and C. Coddet, Relationships Between In-Flight Particle Characteristics and Coating Microstructure with a Twin Wire Arc Spray Process and Different Working Conditions, Surf. Coat. Technol., 2004, 182(2-3), p 215-226

    Article  CAS  Google Scholar 

  33. B. Böhme, Neue Präparationswege für intermetallische Verbindungen, Logos, 2010

  34. H. Watanabe et al., Phase (Liquid/Solid) Dependence of the Normal Spectral Emissivity for Iron, Cobalt, Nickel at Melting Points, Int. J. Thermophys., 2003, 24(2), p 473-488

    Article  CAS  Google Scholar 

  35. ewm GmbH, Schweißzusatzwerkstoffe: Handbuch, 2016. Available: https://www.ewm-group.com/downloads/259184/WM_0924_00.PDF

  36. Datasheet S235JR, Salzgitter Flachstahl, 2011. Available: https://www.salzgitter-flachstahl.de/fileadmin/mediadb/szfg/informationsmaterial/produktinformationen/warmgewalzte_produkte/deu/S235JR.pdf

  37. N. Birks, G. Meier, and F. Pettit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006

    Book  Google Scholar 

  38. D.J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, 2008

    Google Scholar 

  39. A. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM International, Milton Park, 2002

    Google Scholar 

  40. A. Ivarson et al., The Oxidation Dynamics of Laser Cutting of Mild Steel and the Generation of Striations on the Cut Edge, J. Mater. Process. Technol., 1994, 40(3-4), p 359-374

    Article  Google Scholar 

  41. H. Schöpp et al., Temperature and Emissivity Determination of Liquid Steel S235, J. Phys. D Appl. Phys., 2012, 45(23), p 235203

    Article  CAS  Google Scholar 

  42. M. Muller et al., Temperature Measurement of Laser Heated Metals in Highly Oxidizing Environment Using 2D Single-Band and Spectral Pyrometry, J. Laser Appl., 2012, 24(2), p 22006

    Article  CAS  Google Scholar 

  43. H. Kobatake, H. Khosroabadi, and H. Fukuyama, Normal Spectral Emissivity Measurement of Liquid Iron and Nickel Using Electromagnetic Levitation in Direct Current Magnetic Field, Metall. Mater. Trans. A, 2012, 43(7), p 2466-2472

    Article  CAS  Google Scholar 

  44. M. Kelkar and J. Heberlein, Wire-Arc Spray Modeling, Plasma Chem. Plasma Proc., 2002, 22(1), p 1-25

    Article  CAS  Google Scholar 

  45. B.J. Keene, Review of Data for the Surface Tension of Pure Metals, Int. Mater. Rev., 2013, 38(4), p 157-192

    Article  Google Scholar 

  46. A.P. Newbery, P.S. Grant, and R.A. Neiser, The Velocity and Temperature of Steel Droplets During Electric arc Spraying, Surf. Coat. Technol., 2005, 195(1), p 91-101

    Article  CAS  Google Scholar 

  47. D.L. Hale, W.D. Swank, and D.C. Haggard, In-Flight Particle Measurements of Twin Wire Electric Arc Sprayed Aluminum, J. Therm. Spray Technol., 1998, 7(1), p 58-63

    Article  CAS  Google Scholar 

  48. W. Tillmann, E. Vogli, and M. Abdulgader, Asymmetric Melting Behavior in Twin Wire Arc Spraying with Cored Wires, J. Therm. Spray Technol., 2008, 17(5-6), p 974-982

    Article  CAS  Google Scholar 

  49. J. Prehm, Modellierung thermisch-physikalischer Vorgänge beim Thermischen Spritzen, Ph.D. Thesis, Fakultät für Maschinenbau, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, 2014

  50. Z. Zhengji, LDA Application Methods: Laser Doppler Anemometry for Fluid Dynamics, Springer, Berlin, 2010

    Google Scholar 

  51. A. Pourmousa et al., Particle Size Distribution in a Wire-Arc Spraying System, J. Therm. Spray Technol., 2005, 14(4), p 502-510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Szulc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szulc, M., Kirner, S., Forster, G. et al. A Novel Approach to Determine In-Flight Particle Oxidation for Thermal Spraying Processes. J Therm Spray Tech 29, 932–946 (2020). https://doi.org/10.1007/s11666-020-01055-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01055-0

Keywords

Navigation