Skip to main content

Advertisement

Log in

The outcome of biphasic calcium phosphate bone substitute in a medial opening wedge high tibial osteotomy

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Background

Our objective was to assess clinical and radiological findings following a medial opening wedge high tibial osteotomy using a biphasic calcium phosphate (BCP) synthetic bone substitute, designed as a wedge with two differing zones of density. The in-vivo behaviour of this type of bone substitute over time is currently unknown.

Hypothesis

Our hypothesis was that BCP synthetic bone would facilitate bone union and undergo replacement with host bone over the study period.

Patients and methods

Fifteen sequential patients were followed prospectively for minimum 4-years post-operatively. All patients were evaluated clinically using patient reported outcome measures and radiologically to evaluate alignment with maintenance of the osteotomy correction, and bone union with expected BCP dissolution.

Results

All patients had good clinical scores with no reported complications at 4 years. In all cases there were radiographic findings of bone union with consolidation and no loss of correction. However the graft remained densely radiopaque at final follow-up.

Discussions

This study demonstrates that a BCP graft in combination with a locking plate for a medial opening wedge HTO allows early weight-bearing, maintains correction and provides good clinical outcomes. Whilst higher densities of BCP are strong, they do not resorb fully, remaining radiographically visible. This may have implications for the performance of a future knee arthroplasty and caution should therefore be taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Polat G, Balci HI, Cakmak MF, Demirel M, Sen C, Asik M. Long-term results and comparison of the three different high tibial osteotomy and fixation techniques in medial compartment arthrosis. J Orthop Surg Res. 2017;12:44.

    Article  Google Scholar 

  2. Harris JD, McNeilan R, Siston RA, Flanigan DC. Survival and clinical outcome of isolated high tibial osteotomy and combined biological knee reconstruction. Knee. 2013;20:154–61.

    Article  Google Scholar 

  3. Brinkman J-M, Lobenhoffer P, Agneskirchner J, Staubli A, Wymenga A, Van Heerwaarden R. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. Bone Jt J. 2008;90:1548–57.

    Article  Google Scholar 

  4. Luo C-A, Hua S-Y, Lin S-C, Chen C-M, Tseng C-S. Stress and stability comparison between different systems for high tibial osteotomies. BMC Musculoskelet Disord. 2013;14:110.

    Article  Google Scholar 

  5. Stoffel K, Stachowiak G, Kuster M. Open wedge high tibial osteotomy: biomechanical investigation of the modified Arthrex Osteotomy Plate (Puddu Plate) and the TomoFix Plate. Clin Biomech. 2004;19:944–50.

    Article  Google Scholar 

  6. Woodacre T, Ricketts M, Evans JT, Pavlou G, Schranz P, Hockings M, et al. Complications associated with opening wedge high tibial osteotomy—a review of the literature and of 15 years of experience. Knee. 2016;23:276–82.

    Article  CAS  Google Scholar 

  7. Han JH, Kim HJ, Song JG, Yang JH, Bhandare NN, Fernandez AR, et al. Is bone grafting necessary in opening wedge high tibial osteotomy? A meta-analysis of radiological outcomes. Knee Sur Relat Res. 2015;27:207.

    Article  Google Scholar 

  8. Lash NJ, Feller JA, Batty LM, Wasiak J, Richmond AK. Bone grafts and bone substitutes for opening-wedge osteotomies of the knee: a systematic review. Arthroscopy. 2015;31:720–30.

    Article  Google Scholar 

  9. Chae DJ, Shetty GM, Wang KH, Montalban ASC Jr, Kim JI, Nha KW. Early complications of medial opening wedge high tibial osteotomy using autologous tricortical iliac bone graft and T-plate fixation. Knee. 2011;18:278–84.

    Article  Google Scholar 

  10. Kuremsky MA, Schaller TM, Hall CC, Roehr BA, Masonis JL. Comparison of autograft vs allograft in opening-wedge high tibial osteotomy. J Arthroplast. 2010;25:951–7.

    Article  Google Scholar 

  11. Santic V, Tudor A, Sestan B, Legovic D, Sirola L, Rakovac I. Bone allograft provides bone healing in the medial opening high tibial osteotomy. Int Orthop. 2010;34:225–9.

    Article  Google Scholar 

  12. Zamborsky R, Svec A, Bohac M, Kilian M, Kokavec M. Infection in bone allograft transplants. Exp Clin Transplant. 2016;14:484–90.

    Google Scholar 

  13. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25:2445–61.

    Article  CAS  Google Scholar 

  14. Garrido CA, Lobo SE, Turíbio FM, LeGeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater. 2011;129727.

  15. Saito T, Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y. Five- to ten-year outcome following medial opening-wedge high tibial osteotomy with rigid plate fixation in combination with an artificial bone substitute. Bone Jt J. 2014;96-b:339–44.

    Article  CAS  Google Scholar 

  16. Gouin F, Yaouanc F, Waast D, Melchior B, Delecrin J, Passuti N. Open wedge high tibial osteotomies: calcium-phosphate ceramic spacer versus autologous bonegraft. Orthop Traumatol Surg Res. 2010;96:637–45.

    Article  CAS  Google Scholar 

  17. Hooper N, Schouten R, Hooper G. The outcome of bone substitute wedges in medial opening high tibial osteotomy. Open Orthop J. 2013;7:373.

    Article  CAS  Google Scholar 

  18. Rouvillain J, Lavallé F, Pascal-Mousselard H, Catonné Y, Daculsi G. Clinical, radiological and histological evaluation of biphasic calcium phosphate bioceramic wedges filling medial high tibial valgisation osteotomies. Knee. 2009;16:392–97.

    Article  CAS  Google Scholar 

  19. van Hemert WL, Willems K, Anderson PG, van Heerwaarden RJ, Wymenga AB. Tricalcium phosphate granules or rigid wedge preforms in open wedge high tibial osteotomy: a radiological study with a new evaluation system. Knee. 2004;11:451–6.

    Article  Google Scholar 

  20. Delgado-Ruiz RA, Calvo Guirado JL, Romanos GE. Bone grafting materials in critical defects in rabbit calvariae. A systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implant Res. 2018;29:620–34.

    Article  Google Scholar 

  21. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater Today. 2016;19:69–87.

    Article  CAS  Google Scholar 

  22. Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res Part B: Appl Biomater. 2018;106:2493–2512.

    Article  CAS  Google Scholar 

  23. Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, et al. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater. 2012;7:015005.

    Article  CAS  Google Scholar 

  24. Gaasbeek RD, Toonen HG, van Heerwaarden RJ, Buma P. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials. 2005;26:6713–9.

    Article  CAS  Google Scholar 

  25. Jensen SS, Yeo A, Dard M, Hunziker E, Schenk R, Buser D. Evaluation of a novel biphasic calcium phosphate in standardized bone defects. A histologic and histomorphometric study in the mandibles of minipigs. Clinical Oral Implant Res. 2007;18:752–60.

    Article  Google Scholar 

  26. Yang C. The effect of calcium phosphate implant coating on osteoconduction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:606–9.

    Article  CAS  Google Scholar 

  27. Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res. 2008;26:1363–70.

    Article  CAS  Google Scholar 

  28. Barradas AM, Yuan H, van Blitterswijk C, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cells Mater. 2010;21:407–29.

    Article  Google Scholar 

  29. Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials. 1992;13:308–12.

    Article  CAS  Google Scholar 

  30. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.

    Article  Google Scholar 

  31. Trecant M, Delecrin J, Royer J, Goyenvalle E, Daculsi G. Mechanical changes in macro-porous calcium phosphate ceramics after implantation in bone. Clin Mater. 1994;15:233–40.

    Article  Google Scholar 

  32. Ozalay M, Sahin O, Akpinar S, Ozkoc G, Cinar M, Cesur N. Remodeling potentials of biphasic calcium phosphate granules in open wedge high tibial osteotomy. Arch Orthop Trauma Surg. 2009;129:747–52.

    Article  Google Scholar 

  33. Slevin O, Ayeni OR, Hinterwimmer S, Tischer T, Feucht MJ, Hirschmann MT. The role of bone void fillers in medial opening wedge high tibial osteotomy: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2016;24:3584–98.

    Article  Google Scholar 

  34. McKibbin B. The biology of fracture healing in long bones. J Bone Jt Surg Br. 1978;60-B:150–62.

    Article  CAS  Google Scholar 

  35. Yuan N, Rezzadeh KS, Lee JC. Biomimetic scaffolds for osteogenesis. Recept Clin Investig. 2015;2:e898.

    Google Scholar 

  36. Nie L, Suo J, Zou P, Feng S. Preparation and properties of biphasic calcium phosphate scaffolds multiply coated with HA/PLLA nanocomposites for bone tissue engineering applications. J Nanomater. 2012;2012:2.

    Article  CAS  Google Scholar 

  37. Teller M, Gopp U, Neumann HG, Kühn KD. Release of gentamicin from bone regenerative materials: an in vitro study. J Biomed Mater Res Part B: Appl Biomater. 2007;81:23–9.

    Article  CAS  Google Scholar 

  38. Victor SP, Kumar TS. BCP ceramic microspheres as drug delivery carriers: synthesis, characterisation and doxycycline release. J Materi Sci: Mater Med. 2008;19:283.

    CAS  Google Scholar 

  39. Wernike E, Montjovent M-O, Liu Y, Wismeijer D, Hunziker EB, Siebenrock K-A, et al. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater. 2010;19:30–40.

    Article  CAS  Google Scholar 

  40. Daculsi G. Smart scaffolds: the future of bioceramic. J Mater Sci: Mater Med. 2015;26:154.

    Google Scholar 

  41. Lobo SE, Livingston Arinzeh T. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials. 2010;3:815–26.

    Article  CAS  Google Scholar 

  42. Duivenvoorden T, van Diggele P, Reijman M, Bos PK, van Egmond J, Bierma-Zeinstra SMA, et al. Adverse events and survival after closing- and opening-wedge high tibial osteotomy: a comparative study of 412 patients. Knee Surg Sports Traumatol Arthrosc. 2017;25:895–901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Putnis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the local ethics committee (NSLHD HREC RESP/17/110).

Informed consent

Written informed consent was obtained by each participant prior to commencement of the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putnis, S., Neri, T., Klasan, A. et al. The outcome of biphasic calcium phosphate bone substitute in a medial opening wedge high tibial osteotomy. J Mater Sci: Mater Med 31, 53 (2020). https://doi.org/10.1007/s10856-020-06391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06391-9

Navigation