Skip to main content
Log in

Contrasting the expression pattern change of polyamine oxidase genes and photosynthetic efficiency of maize (Zea mays L.) genotypes under drought stress

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The aim of this study was to contrast the effects of drought stress on polyamine oxidases gene expression and activity as well as photosynthetic efficiency in relatively tolerant (Karoon) and sensitive (260) maize genotype.d Reduction in leaf relative water content as a result of drought led to increase in root growth, but diminished shoot growth indices. Under drought stress, activity of antioxidant enzyme, catalase, significantly increased in both genotypes, whereas significant higher activity of superoxide dismutase and peroxidase was only observed in Karoon genotype. Expression of polyamine oxidase (PAO) genes (zmPAO1, zmPAO2, zmPAO3, zmPAO4, zmPAO5, zmPAO6) and activity of enzymatic polyamine oxidation was increased in both genotypes under drought stress. The enhancement in PAO gene expression and enzyme activity was more prominent in Karoon cultivar compared to 260. Chlorophyll a fluorescence and fast induction kinetics were negatively influenced by drought stress. These parameters were more affected in 260 cultivar compared with Karoon. Our results suggest that under drought stress, higher activity of polyamine oxidase pathway in back-conversion of Spermine and spermidine to putrescine (protectant of photosynthetic apparatus) as well as higher antioxidant enzymes activity in Karoon cultivar, may play a role in higher efficiency of photosynthetic process in this cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abedi T, Pakniyat H and Sabernia M 2010 Antioxidant enzyme change in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Plant Breed. 46 27–34

    CAS  Google Scholar 

  • Aebi H 1974 Catalase; in: Methods of Enzyme Analysis (ed) HU Bergmeyer (London: Academic Press) pp 673–677

    Google Scholar 

  • Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T and Tiburcio A 2011 Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant (Craterostigma plantagineum L.). Plant Signal Behav. 6 243–250

    PubMed  PubMed Central  Google Scholar 

  • An Z, Li C, Zhang L and Alva AK 2012 Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress. S. Afr. J. Bot. 83 145–150

    CAS  Google Scholar 

  • Azizollahi Z, Ghaderian SM and Ghotbi-Ravandi AA 2019 Cadmium accumulation and its effects on physiological and biochemical characters of summer savory (Satureja hortensis L.). Int. J. Phytoremediat. 29 1–13

    Google Scholar 

  • Banks JM 2018 Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ. Exp. Bot. 55 118–127

    Google Scholar 

  • Bassie L, Zhu C, Romagosa I, Christou P and Capell T 2008 Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds. Mol. Breed. 22 39–50

    CAS  Google Scholar 

  • Basu PS, Sharma A and Sukumaran NP 1998 Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica 35 13–19

    Google Scholar 

  • Bjorkman O and Demmig B 1987 Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170 489–504

    CAS  PubMed  Google Scholar 

  • Bradford MM 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254

    CAS  PubMed  Google Scholar 

  • Carvalho M, Castro I, Moutinho-Pereira J, Correia C, Egea-Cortines M, Matos M, Rosa E, Carnide V and Lino-Net T 2019 Evaluating stress responses in cowpea under drought stress. Plant Physiol. 153 1600–1617

    Google Scholar 

  • Carvalho M, Lino-Neto T, Rosa E and Carnide V 2017 Cowpea: a legume crop for a challenging environment. J. Sci. Food Agric. 97 4273–4284

    CAS  PubMed  Google Scholar 

  • Chugh V, Kaur N and Gupta A 2011 Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedling in response to drought. Indian. J. Biochem Bio. 48 47–53

    CAS  Google Scholar 

  • Do T, Degenkolbe A, Erban AG, Heyer J, Kopka K, Köhl DK, Hincha E and Zuther A 2013 Dissecting rice polyamine metabolism under controlled long-term drought Stress. Plos One 8 1–14

    Google Scholar 

  • Ebeed H, Hassan N and Aljarani AM 2017 Exogenous applications of Polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 118 438–448

    CAS  PubMed  Google Scholar 

  • Fathti A, Barari D and Amani T 2016 Effect of drought stress and its mechanism in plants. Life Sci. 10 1–6

    Google Scholar 

  • Fazeli F, Ghrbanli M and Niknam V 2007 Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant. 51 98–103

    CAS  Google Scholar 

  • Ghotbi-Ravandi AA, Shahbazi M, Shariati M and Mulo P 2014 Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) genotypes. J. Agron. Crop Sci. 200 403–415

    CAS  Google Scholar 

  • Ghotbi-Ravandi AA, Shahbazi M, Pessarakli M and Shariati M 2016 Monitoring the photosystem II behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient. J. Plant. Nutr. 39 1174–1185

    CAS  Google Scholar 

  • Ghotbi-Ravandi AA, Shariati M, Shahbazi M and Shobbar ZS 2019 Expression pattern and physiological roles of plastid terminal oxidase (PTOX) in wild and cultivated barley genotypes under drought stress. Environ. Exp. Bot. 162 319–320

    Google Scholar 

  • Giannoplitis C and Ries S 1997 Superoxidase dismutases activity. Plant Physiol. 59 309–314

    Google Scholar 

  • Gomes MT, Luz M, Santos M, Batitucci D, Silva M and Falqueto AR 2012 Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci. Hortic. 142 49–56

    CAS  Google Scholar 

  • Govindjee R 1995 Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust. J. Plant Physiol. 22 131–160

    CAS  Google Scholar 

  • Groppa MP and Benavides E 2008 Polyamines and abiotic stress: recent advances. Amino Acids 34 35–45

    CAS  PubMed  Google Scholar 

  • Hamdani S, Yaakoubi H and Carpentier R 2011 Polyamines interaction with thylakoid proteins during stress. J. Photochem. Photobio. 104 314–331

    CAS  Google Scholar 

  • Henry A, Cal A, Batoto TC, Torres RO and Serraj R 2012 Root attributes affecting water uptake of rice (Oryza sativa L.) under drought. J. Exp. Bot. 63 4751–4763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K and Kashiwagi V 2010 Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42 39–51

    CAS  PubMed  Google Scholar 

  • Ioannidis NE, Cruz JA, Kotzabasis K and Kramer D 2012 Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLos One 7 e29864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jasso-Robles FI, Jiménez-Bremont JF, Becerra A, Juárez-Montiel M and Gonzalez M 2016 Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction. Environ Exp. Bot. 155 118–127

    Google Scholar 

  • Kalaji HM, Bosa J and scielniak S 2011 Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp. Bot. 73 64–72

    CAS  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch JH and Serraj R 2006 Variability of root length density and its contribution to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crop Res. 95 171–181

    Google Scholar 

  • Kaur-Sawhney R, Flores H and Galston A 1981 Polyamine oxidase in oat leaves: A cell wall-localized enzyme. Plant Physiol. 68 494–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusano H, Fang J and Elisa A 2008 Polyamine essential factors for growth and survival. Planta 228 367–381

    CAS  PubMed  Google Scholar 

  • Lazar D 1999 Chlorophyll a fluorescence induction1. Biochim. Biophys. Acta 1412 1–28

    CAS  PubMed  Google Scholar 

  • Liang Z, Pandey P, Stoerger V, Xu Y, Qiu Y, Ge Y and Schnable JC 2018 Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. GigaScience 72 1–11

    Google Scholar 

  • Liu W, Wang H, Wu X, Gong T and Moriguchi S 2015 Polyamines function in stress tolerance: from synthesis to regulation. Plant Sci. 6 827–836

    Google Scholar 

  • Manoli A, Sturaro A, Trevisan S, Quaggiotti S and Nonis A 2010 Evaluation of candidate reference genes for qPCR in maize. J. Plant Physiol. 169 807–815

    Google Scholar 

  • Mehta P, Jajoo S, Mathur W and Bharti S 2010 Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol. Biochem. 48 16–20

    CAS  PubMed  Google Scholar 

  • Merwad A, Desoky E and Rady M 2018 Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci. Hortic. 228 132–144

    CAS  Google Scholar 

  • Ono Y, Kim DW, Watanabe K, Sasaki A, Niitsu M, Berberich T, Kusano T and Takahashi Y 2012 Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Asids 42 867–76

    CAS  Google Scholar 

  • Oukarroum A, Madidi G, Schansker A and Strasser R 2007 Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 60 438–446

    CAS  Google Scholar 

  • Pfaffl M, Horgan GW and Dempfle L 2002 Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR nucleic acids. Plant Physiol. Biochem. 30 36–40

    Google Scholar 

  • Reis RS, Moura E, Heringer AS, Santa-Catarina C and Silveira V 2016 Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J. Proteom. 130 170–179

    CAS  Google Scholar 

  • Rostamza M, Richards RA and Watt M 2013 Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann. Bot. 112 439–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seki T, Umezawa K, Urano K and Shinozaki A 2007 Regulatory metabolic networks in drought stress responses. Plant Biol. 10 296–302

    CAS  Google Scholar 

  • Shahbazi M, Gilbert AM, Labour M and Kuntz M 2007 Dual role of the plastid terminal oxidase in tomato. Plant Physiol. 145 691–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R and Shao MA 2009 Understanding water deficit stress-induced changes in the basic metabolism of higher plants-biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit. Rev. Biotechnol. 29 131–151

    CAS  PubMed  Google Scholar 

  • Sharma P and Dubey RS 2005 Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings. Plant Growth Regul. 46 209–221

    CAS  Google Scholar 

  • Shu S, Chen J, Lu W, Sun J, Guo J, Yuan Y and Li J 2014 Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings. J. Plant Res. 127 763–773

    CAS  PubMed  Google Scholar 

  • Shu S, Yuan LY, Guo J, Sun C and Liu J 2012 Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. Afr. J. Biotech. 11 6064–6074

    CAS  Google Scholar 

  • Shu S, Yuan Y, Chen J, Sun J, Zhang W, Tang Y, Zhong M and Guo J 2015 The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci Rep. 5 1439–1445

    Google Scholar 

  • Steele KA, Price AH, Witcombe JR, Shrestha R, Singh BN, Gibbons JM and Virk D 2013 QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. Theor. Appl. Genet. 126 101–108

    CAS  PubMed  Google Scholar 

  • Strasser BJ and Strasser R 1995 Measuring fast fluorescence transients to address environmental questions: The JIP-test; in Photosynthesis: From light to biosphere (ed) P Mathis (Dordrecht: Kluwer Academic Publishers) pp 77–980

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M and Srivastava A 2004 Analysis of the chlorophyll a fluorescence transient; in Chlorophyll a Fluorescence: A Signature of Photosynthesis (eds) G Papageorgiou, and G. Govindjee, (Dordrecht: Springer) pp 321–362

    Google Scholar 

  • Szalai G, Janda K, Darkó E, Janda T, Peeva V and Pál M 2017 Comparative analysis of polyamine metabolism in wheat and maize plants. Plant Physiol Biochem. 112 239–250

    CAS  PubMed  Google Scholar 

  • Tassoni A, Van Buuren M, Franceschetti M, Fornale F and Bagni N 2000 Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol. Biochem. 38 383–393

    CAS  Google Scholar 

  • Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis K and Angelini G 2011 Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol. 157 200–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toscano S, Farieri E, Ferrante A and Romano D 2016 Physiological and biochemical responses in two ornamental shrubs to drought stress. Plant Sci. 7 645–660

    Google Scholar 

  • Toth SZ, Schansker S and Strasser RJ 2007 A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth. Res. 93 193–203

    CAS  PubMed  Google Scholar 

  • Wasson AP, Richards R, Chatrath R, Misra SC, Prasad S, Rebetzke GJ, Kirkegaard J, Christopher J and Watt M 2012 Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 63 3485–98

    CAS  PubMed  Google Scholar 

  • Wu F, Zhang G and Dominy P 2003 Four barely genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exper Bot. 50 67–78

    CAS  Google Scholar 

  • Wu J, Jiang Y, Liang Y, Chen L, Chen W and Cheng B 2019 Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol. Biochem. 137 179–188

    CAS  PubMed  Google Scholar 

  • Zhou Q and Yu B 2010 Changes in content of free, conjugated and bound polyamines and osmotic adjustment in adaptation of vetiver grass to water deficit. Plant Physiol. Biochem. 48 417–25

    CAS  PubMed  Google Scholar 

  • Zivcak M, Bresti K, Ososk A and Slamka P 2008 Performance index as a sensitive indicator of water stress in (Triticum aestivum L.). Plant Soil. Environ. 54 133–139

    Google Scholar 

  • Zushi K, Kajiwara S and Matsuzoe N 2012 Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Sci. Hortic. 148 39–46 .

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ghotbi-Ravandi.

Additional information

Corresponding editor: Manchikatla Venkat Rajam

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Supplementary material 2 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakdel, H., Hassani, S.B., Ghotbi-Ravandi, A.A. et al. Contrasting the expression pattern change of polyamine oxidase genes and photosynthetic efficiency of maize (Zea mays L.) genotypes under drought stress. J Biosci 45, 73 (2020). https://doi.org/10.1007/s12038-020-00044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00044-3

Keywords

Navigation