Skip to main content
Log in

The Grassmannian of affine subspaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The Grassmannian of affine subspaces is a natural generalization of both the Euclidean space, points being 0-dimensional affine subspaces, and the usual Grassmannian, linear subspaces being special cases of affine subspaces. We show that, like the Grassmannian, the affine Grassmannian has rich geometrical and topological properties: It has the structure of a homogeneous space, a differential manifold, an algebraic variety, a vector bundle, a classifying space, among many more structures; furthermore, it affords an analogue of Schubert calculus and its (co)homology and homotopy groups may be readily determined. On the other hand, like the Euclidean space, the affine Grassmannian serves as a concrete computational platform on which various distances, metrics, probability densities may be explicitly defined and computed via numerical linear algebra. Moreover, many standard problems in machine learning and statistics—linear regression, errors-in-variables regression, principal components analysis, support vector machines, or more generally any problem that seeks linear relations among variables that either best represent them or separate them into components—may be naturally formulated as problems on the affine Grassmannian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In certain areas of algebraic geometry and representation theory, notably Langland’s program, the term ‘affine Grassmannian’ widely refers to a functor associated with an algebraic group, which is completely unrelated to the sense in which it is used in this article.

  2. Definition 2 has appeared in [26, Definition 3.1]. We reproduce it here for the reader’s easy reference.

  3. A projection matrix satisfies \(P^2 = P\) and an orthogonal projection matrix is in addition symmetric, i.e., \(P^{\scriptscriptstyle {\mathsf {T}}}= P\). Despite its name, an orthogonal projection matrix P is not an orthogonal matrix unless P is an identity matrix.

  4. Definition 3 has appeared in [26, Definition 3.4]. We reproduce it here for the reader’s easy reference.

  5. A cell decomposition of a topological space X is a partition of X into a disjoint union of open subsets \(\{X_i\}_{i\in I}\) such that for each \(i\in I\) there is a continuous map \(f:B^{n_i} \rightarrow X\) from the unit closed ball \(B^{n_i}\) of dimension \(n_i\) to X satisfying (i) the restriction of f to the interior of \(B^{n_i}\) is a homeomorphism onto \(X_i\); and (ii) the image \(f(\partial B^{n_i})\) is contained in the union of finitely many \(X_j\)’s with \(\dim X_j < \dim X_i\).

References

  1. Absil, P.-A., Mahony, R., & Sepulchre, R. (2008) Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ.

    Book  Google Scholar 

  2. Absil, P.-A., Mahony, R., & Sepulchre, R. (2004) Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math., 80, no. 2, pp. 199–220.

    Article  MathSciNet  Google Scholar 

  3. Achar, P. N. & Rider, L. (2015) Parity sheaves on the affine Grassmannian and the Mirković–Vilonen conjecture. Acta Math., 215, no. 2, pp. 183–216.

    Article  MathSciNet  Google Scholar 

  4. Alekseevsky, D. & Arvanitoyeorgos, A. (2007) Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc., 359, no. 8, pp. 3769–3789.

    Article  MathSciNet  Google Scholar 

  5. Belkin, M. & Niyogi, P. (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. Proc. Adv. Neural Inform. Process. Syst., 14, pp. 586–691.

    Google Scholar 

  6. Björck, Å. & Golub, G. H. (1973) Numerical methods for computing angles between linear subspaces. Math. Comput., 27 (1973), no. 123, pp. 579–594.

    Article  MathSciNet  Google Scholar 

  7. Borel, A. (1953) Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math., 57, pp. 115–207.

    Article  MathSciNet  Google Scholar 

  8. Brown, E. H., Jr (1982) The cohomology of \(B\!{{\rm SO}}_n\) and \(B\!{{\rm O}}_n\) with integer coefficients. Proc. Am. Math. Soc., 85 (1982), no. 2, pp. 283–288.

  9. Chern, S.-S. (1948) On the multiplication in the characteristic ring of a sphere bundle. Ann. Math., 49, pp. 362–372.

    Article  MathSciNet  Google Scholar 

  10. Chikuse, Y. (2012) Statistics on Special Manifolds, Lecture Notes in Statistics, 174, Springer, New York, NY.

  11. Chirikjian, G. S. & Kyatkin, A. B. (2001) Engineering Applications of Noncommutative Harmonic Analysis, CRC Press, Boca Raton, FL.

    MATH  Google Scholar 

  12. Edelman, A., Arias, T., & Smith, S. T. (1999) The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20, no. 2, pp. 303–353.

    Article  MathSciNet  Google Scholar 

  13. Frenkel, E. & Gaitsgory, D. (2009) Localization of \({\mathfrak{g}}\)-modules on the affine Grassmannian. Ann. Math., 170, no. 3, pp. 1339–1381.

    Article  MathSciNet  Google Scholar 

  14. Golub, G. & Van Loan, C. (2013) Matrix Computations, 4th Ed., John Hopkins University Press, Baltimore, MD.

    MATH  Google Scholar 

  15. Gordon, C. S. (1996) Homogeneous Riemannian manifolds whose geodesics are orbits. pp. 155–174, S. Gindikin, Ed., Topics in Geometry, Progress in Nonlinear Differential Equations and their Applications, 20, Birkhäuser, Boston, MA.

  16. Griffiths, P. & Harris, J. (1994) Principles of Algebraic Geometry, Wiley, New York, NY.

    Book  Google Scholar 

  17. Haro, G., Randall, G., & Sapiro, G. (2006) Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds. Proc. Adv. Neural Inform. Process. Syst. (NIPS), 26, pp. 553–560.

    Google Scholar 

  18. Hirsch, M. (1976) Differential Topology, Springer, New York, NY.

    Book  Google Scholar 

  19. Hodge, W. V. D. & Daniel, P. (1994) Methods of Algebraic Geometry, 2, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  20. Husemoller, D. (1994) Fibre bundles. Third edition. Graduate Texts in Mathematics, 20. Springer, New York, 1994.

  21. Klain, D. A. & Rota, G.-C. (1997) Introduction to Geometric Probability, , Cambridge University Press.

    MATH  Google Scholar 

  22. Kleiman, S. L., & Laksov, D. (1972) Schubert calculus. Am. Math. Monthly, 79 (1972), pp. 1061–1082.

    Article  MathSciNet  Google Scholar 

  23. Koev, P. & Edelman, A. (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput., 75, no. 254, pp. 833–846.

    Article  MathSciNet  Google Scholar 

  24. Lam, T. (2008) Schubert polynomials for the affine Grassmannian. J. Am. Math. Soc., 21, no. 1, pp. 259–281.

    Article  MathSciNet  Google Scholar 

  25. Lerman, G. & Zhang, T. (2011) Robust recovery of multiple subspaces by geometric \(l_p\) minimization. Ann. Statist., 39, no. 5, pp. 2686–2715.

    Article  MathSciNet  Google Scholar 

  26. Lim, L.-H., Wong, K. S.-W., & Ye, K. (2019) Numerical algorithms on the affine Grassmannian, SIAM J. Matrix Anal. Appl., 40, no. 2, pp. 371–393.

    Article  MathSciNet  Google Scholar 

  27. Ma, Y., Yang, A., Derksen, H., & Fossum, R. (2008) Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev., 50, no. 3, pp. 413–458.

    Article  MathSciNet  Google Scholar 

  28. Milnor, J. W. & Stasheff, J. D. (1974) Characteristic Classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, NJ.

    Google Scholar 

  29. Nicolaescu, L. I. (2007) Lectures on the Geometry of Manifolds, 2nd Ed., World Scientific, Hackensack, NJ.

    Book  Google Scholar 

  30. Prasolov, V. V. (2007) Elements of Homology Theory, Graduate Studies in Mathematics, 81, AMS, Providence, RI.

    Google Scholar 

  31. Roweis, S. T. & Saul, L. K. (2000) Nonlinear dimensionality reduction by locally linear embedding. Science, 290, no. 5500, pp. 2323–2326.

    Article  Google Scholar 

  32. Sato, M. & Sato, Y. (1983) Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science (Tokyo, 1982), pp. 259–271, North-Holland Math. Stud., 81, Lecture Notes Numer. Appl. Anal., 5, North-Holland, Amsterdam.

  33. Sottile, F. (2001) Schubert calculus, Schubert cell, Schubert cycle, and Schubert polynomials. pp. 343–346 in Hazewinkel, M. (Ed.) Encyclopaedia of Mathematics, Supplement III, Kluwer Academic Publishers, Dordrecht, Netherlands.

  34. St. Thomas, B., Lin, L., Lim, L.-H., & Mukherjee, S. (2014) Learning subspaces of different dimensions. Preprint arXiv:1404.6841.

  35. Takeuchi, M. (1962) On Pontrjagin classes of compact symmetric spaces. J. Fac. Sci. Univ. Tokyo Sect., Iss. 9, pp. 313–328.

  36. Tenenbaum, J., De Silva, V., & Langford, J. (2000) A global geometric framework for nonlinear dimensionality reduction, Science, 290, no. 5500, pp. 2319–2323.

    Article  Google Scholar 

  37. Thomas, E. (1960) On the cohomology of the real Grassmann complexes and the characteristic classes of \(n\)-plane bundles. Trans. Am. Math. Soc., 96, pp. 67–89.

    MathSciNet  MATH  Google Scholar 

  38. Tyagi, H., Vural, E., & Frossard, P. (2013) Tangent space estimation for smooth embeddings of Riemannian manifolds. Inf. Inference, 2, no. 1, pp. 69–114

    Article  MathSciNet  Google Scholar 

  39. Viro, O. Y. & Fuchs, D. B.Homology and Cohomology, Encyclopaedia Math. Sci., 24, Topology II, pp. 95–196, Springer, Berlin, 2004.

  40. Wong, Y.-C. (1967) Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci., 57, no. 3, pp. 589–594.

    Article  MathSciNet  Google Scholar 

  41. Ye, K. & Lim, L.-H. (2016) Schubert varieties and distances between linear spaces of different dimensions. SIAM J. Matrix Anal. Appl., 37, no. 3, pp. 1176–1197.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the two referees for their very helpful comments and suggestions. In particular, Example 1 was suggested by one of them. The work in this article is supported by DARPA D15AP00109, NSF IIS 1546413, DMS 1209136, NSFC Grant no. 11801548, NSFC Grant no. 11688101 and National Key R&D Program of China Grant no. 2018YFA0306702. In addition, LHL’s work is supported by a DARPA Director’s Fellowship and the Eckhardt Faculty Fund; KY’s work is supported by the Hundred Talents Program of the Chinese Academy of Sciences and the Recruitment Program of Global Experts of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lek-Heng Lim.

Additional information

Communicated by Alan Edelman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, LH., Wong, K.SW. & Ye, K. The Grassmannian of affine subspaces. Found Comput Math 21, 537–574 (2021). https://doi.org/10.1007/s10208-020-09459-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-020-09459-8

Keywords

Mathematics Subject Classification

Navigation