Skip to main content
Log in

Trace Elements in Tephra Soils of Mounts Kupe and Manengouba (Cameroon)

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Increasing demographic pressure in the area around the Mounts Kupe and Manengouba (Cameroon) is leading to increased agricultural activities with potential heavy metal pollution problems. Concentrations of twelve trace elements (TEs) in five Andosols and one Cambisol developed on tephra of ages varying from 6.61 ± 0.17 to 0.01 ± 0.12 Ma of the mounts mentioned above were determined and their correlation relationships with selected soil physico–chemical (organic matter (OM), \({\text{p}}{{{\text{H}}}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\), pHKCl, pHNaF, oxalate extractable Al, Fe, Si, pyrophosphate extractable Al, allophane and ferrihydrite contents) properties evaluated. Alkaline fusion was used to bring the elements in solution followed by elemental detection through ICP–OES. Results showed that average concentrations (ppm) of the TEs increased in the following order: Be, Bi (<5) ≈ Cd, Pb (<10) < Co (54 ± 13), Cu (60 ± 23) < S (109 ± 140), Ni (119 ± 51), Zn (125 ± 17), Cr (152 ± 69), Sr (197 ± 133) < Ba (472 ± 224). Vertical distribution of TEs was irregular, except for S accumulated in topsoil. Ba, Sr, and Zn are associated to OM and allophane according to correlation analysis. Cr, Co, Cu and Ni are apparently more related to OM and pH, while S appears to be related to OM only. In both the Andosols and Cambisol, TEs are dominantly lithogenic. Relationships between TEs indicated that Ba is associated to Zn, Co to Cr, Cu and Ni, Cr to Cu and Ni, while Cu is associated to Ni. Status of TEs in these soils will provide more critical information to environmentalists for pollution monitoring. This study provides baseline data on TE concentrations and distribution in tephra soils of the humid tropics in Africa where a paucity of such data exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Abd–Elfattah, and K. Wada, “Adsorption of lead, copper, zinc, cobalt and cadmium by soils that differ in cation–exchange materials,” J. Soil Sci. 32, 271–283 (1981). https://doi.org/10.1111/j.1365-2389.1981.tb01706.x

    Article  Google Scholar 

  2. J. Aller, J. L. Bernal, and M. J. Del Nozal, Geochemistry of Trace Elements, Comun. I.N.I.A., Ser.: Prot. Veg. no. 18 (National Institute for Agricultural and Food Research and Technology, Madrid, 1989).

  3. B. J. Alloway, “Sources of heavy metals and metalloids in soils,” in Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Ed. by B. J. Alloway (Springer–Verlag, Dordrecht, 2013), pp. 367–394. https://doi.org/10.1007/978-94-007-4470-7

    Book  Google Scholar 

  4. J. V. Amaral, R. T. Cruz, Cunha, and A. Rodrigues, “Baseline levels of metals in volcanic soils of the Azores (Portugal),” Soil Sediment Contam. 15, 123–130 (2006). https://doi.org/10.1080/15320380500506255

    Article  Google Scholar 

  5. T. Asami and F. Fukazawa, “Beryllium contents of uncontaminated soils and sediments in Japan,” Soil Sci. Plant Nutr. 31 (1), 43–53 (1985). https://doi.org/10.1080/17470765.1985.10555216

    Article  Google Scholar 

  6. G. S. Bañuelos and H. A. Ajwa, “Trace elements in soils and plants: an overview,” J. Environ. Sci. Health, Part A 34 (4), 951–974 (1999). https://doi.org/10.1080/10934529909376875

    Article  Google Scholar 

  7. R. J. Bartlett and B. R. James, “Mobility and bioavailability of chromium in soils” in Chromium in Nature and Human Environments, Ed. by J. O. Nriagu and E. Nieboer (Wiley, New York, 1988), pp. 189–216.

    Google Scholar 

  8. G. A. Borchardt and M. E. Harward, “Trace element correlation of volcanic ash soils,” Soil Sci. Soc. Am. Proc. 35, 626–631 (1971). https://doi.org/10.2136/sssaj1971.03615995003500040040x

    Article  Google Scholar 

  9. M. M. S. Cabral Pinto, E. Ferreir da Silva, M. M. V. G. Silva, and P. Melo–Gonçalves, “Heavy metals of Santiago Island (Cape Verde) top soils: estimated background value maps and environmental risk assessment,” J. Afr. Earth Sci. 101, 162–176 (2015). https://doi.org/10.1016/j.jafrearsci.2014.09.011

    Article  Google Scholar 

  10. W. Childs, Towards Understanding Soil Mineralogy: II. Notes on Ferrihydrite: NZ Soil Bureau Laboratory Report CM7 (New Zealand Soil Bureau, Lower Hutt, NZ, 1985).

  11. E. Davies, Applied Soil Trace Elements (Wiley, Chichester, 1980).

    Google Scholar 

  12. N. Defarge, J. Spiroux de Vendômois, and G. E. Séralini, “Toxicity of formulants and heavy metals in glyphosate–based herbicides and other pesticides,” Toxicol. Rep. 5, 156–163 (2018). https://doi.org/10.1016/j.toxrep.2017.12.025

    Article  Google Scholar 

  13. P. Devendar and G. Yang, “Sulfur–containing agrochemicals,” Top. Curr. Chem. 375 (82), 1–44 (2017). https://doi.org/10.1007/s41061-017-0169-9

    Article  Google Scholar 

  14. E. Dœlsch, V. van de Kerchove, and H. S. Macary, “Heavy metal content in soils of Réunion (Indian Ocean),” Geoderma 134, 119–134 (2006). https://doi.org/10.1016/j.geoderma.2005.09.003

    Article  Google Scholar 

  15. R. K. Enang, B. P. K. Yerima, G. K. Kome, and E. van Ranst, “Effects of forest clearance and cultivation on bulk density variations and relationships with texture and organic matter in tephra soils of Mount Kupe (Cameroon),” Commun. Soil Sci. Plant Anal. 48 (19), 2231–2245 (2017). https://doi.org/10.1080/00103624.2017.1407785

    Article  Google Scholar 

  16. R. K. Enang, B. P. K. Yerima, and G. K. Kome, “Soil physico–chemical properties and land suitability evaluation for maize (Zea mays), beans (Phaseolus vulgaris) and Irish potatoes (Solanum tuberosum) in tephra soils of the western slopes of Mount Kupe (Cameroon),” Afr. J. Agric. Res. 11 (45), 4571–4583 (2016). https://doi.org/10.5897/AJAR2016.11669

    Article  Google Scholar 

  17. European Commission, Directive 2003/17/EC of the European Parliament and of the Council of March 3, 2003 Amending Directive 98/70/EC Relating to the Quality of Petrol and Diesel Fuels (Brussels, 2003).

  18. A. B. Fabricio Neta, C. W. A. do Nascimento, C. M. Biondi, P. van Straaten, and S. M. B. Bittar, “Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago,” Environ. Geochem. Health 40 (1), 163–173 (2016). https://doi.org/10.1007/s10653-016-9890-5

    Article  Google Scholar 

  19. Guidelines for Soil Description, 4th ed. (UN Food and Agriculture Organization, Rome, 2006).

  20. B. Gèze, Géographie Physique et Géologie du Cameroun Occidental, Mémoires du Muséum National d’Histoire Naturelle, Nouv. Sér. 17 (Éditions du Muséum, Paris, 1943).

  21. W. L. Griffin, B. Sundvoll, and H. Kristmannsdottir, “Trace element composition of anorthosite plagioclase,” Earth Planet. Sci. Lett. 24, 213–223 (1974). https://doi.org/10.1016/0012-821X(74)90099-5

    Article  Google Scholar 

  22. K. S. Heier and S. R. Taylor, “Distribution of Ca, Sr and Ba in southern Norwegian pre–Cambrian alkali feldspars,” Geochim. Cosmochim. Acta 17, 286–304 (1959). https://doi.org/10.1016/0016-7037(59)90101-2

    Article  Google Scholar 

  23. ISO 14869–2:2002: Soil Quality—Dissolution for the Determination of Total Element Content—Part 2: Dissolution by Alkaline Fusion (International Organization for Standardization, Geneva, 2002).

  24. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

  25. A. Kabata–Pendias, Trace Elements in Soils and Plants, 4th ed. (CRC Press, Boca Raton, FL, 2011). https://doi.org/10.1201/b10158

    Google Scholar 

  26. M. Kaur, Bachelor’s Theses (Claremont, CA, 2013). http://scholarship.claremont.edu/scripps_theses/150.

  27. C. Latrille, L. Denaix, and I. Lamy, “Interaction of copper and zinc with allophane and organic matter in the B horizon of an andosol,” Eur. J. Soil Sci. 54, 357–364 (2003). https://doi.org/10.1046/j.1365-2389.2003.00530.x

    Article  Google Scholar 

  28. V. E. Manga, C. M. Agyingi, and C. E. Suh, “Trace element soil quality status of mount Cameroon soils,” Adv. Geol. 2014, 1–8 (2014). https://doi.org/10.1155/2014/894103

    Article  Google Scholar 

  29. M. Marks, R. Halama, T. Wenzel, and G. Markl, “Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt trace–element partitioning,” Chem. Geol. 211, 185–215 (2004). https://doi.org/10.1016/j.chemgeo.2004.06.032

    Article  Google Scholar 

  30. V. Mendoza–Grimón, J. M. Hernández–Moreno, J. A. Rodríguez Martín, J. R. Fernández–Vera, and M. P. Palacios–Díaz, “Trace and major element associations in basaltic ash soils of El Hierro Island,” J. Geochem. Explor. 147, 277–282 (2014). https://doi.org/10.1016/j.gexplo.2014.06.010

    Article  Google Scholar 

  31. W. E. Motzer, “Chemistry, geochemistry, and geology of chromium and chromium compounds,” in Chromium (VI) Handbook, Ed. by J. Guertin, J. A. Jacobs, and C. P. Avakian (CRC Press, Boca Raton, FL, 2005), pp. 23–91. https://doi.org/10.1201/9780203487969.ch2

    Google Scholar 

  32. G. Nkouathio, D. A. Kagou, J. M. Bardintzeff, P. Wandji, H. Bellon, and A. Pouclet, “Evolution of volcanism in graben and horst structures along the Cenozoic Cameroon Line (Africa): implications for tectonic evolution and mantle source composition,” Miner. Petrol. 94, 287–303. https://doi.org/10.1007/s00710-008-0018-1

    Article  Google Scholar 

  33. M. Norman, M. O. Garcia, and A. J. Pietruszka, “Trace–element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeites from the 1955 eruption of Kilauea Volcano, Hawaiʼi, and petrogenesis of differentiated rift–zone lavas,” Am. Miner. 90, 888–899 (2005). https://doi.org/10.2138/am.2005.1780

    Article  Google Scholar 

  34. R. L. Parfitt, and A. D. Wilson, “Estimation of allophane and halloysite in three sequences of volcanic soils,” in Volcanic Soils: Weathering and Landscape Relationships of Soils on Tephra and Basalt, Catena Supplement vol. 7, Ed. by E. Fernandez–Caldos, and D. H. Yaalon (Catena, Cremlingen, 1985), pp. 1–8.

  35. J. M. Pauwels, E. van Ranst, M. Verloo, and A. Mvondo Ze, Manuel de Laboratoire de Pédologie—Méthodes d’Analyses de Sols et de Plantes; Équipment et Gestion des Stocks de Verrerie et de Produits Chimiques, Publications Agricoles no. 28 (Administration Generale de la Cooperation au Development, Brussels, 1992).

  36. M. J. Plantinga, Redistribution of Trace Elements upon the Weathering of Volcanic Ash Soils in Costa Rica: Report No. 119 (Agriculture University of Wageningen, Wageningen, 1997).

  37. A. Pouclet, D. A. Kagou, J. M. Bardintzeff, P. Wandji, T. P. Chakam, D. G. Nkouathio, H. Bellon, and G. Ruffet, “The Mount Manengouba, a complex volcano of the Cameroon Line: Volcanic history, petrological and geochemical features,” J. Afr. Earth Sci. 97, 297–321 (2014). https://doi.org/10.1016/j.jafrearsci.2014.04.023

    Article  Google Scholar 

  38. S. Rahman, H. Takaki, M. Tamai, and Y. Nagatomo, “Distribution of zinc, manganese, copper, cobalt, and nickel in andosols profiles,” Soil Sci. Plant Nutr. 42 (4), 881–891 (1996). https://doi.org/10.1080/00380768.1996.10416635

    Article  Google Scholar 

  39. C. Reimann and P. de Caritat, Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist (Springer–Verlag, Berlin, 1998).

    Book  Google Scholar 

  40. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Prentice Hall, New York, 1993).

    Google Scholar 

  41. W. H. Schlesinger and E. S. Bernhardt, Biogeochemistry: An Analysis of Global Change (Academic, San Diego, 2013).

    Google Scholar 

  42. A. W. Schroth, B. C. Bostick, M. Graham, J. M. Kaste, M. J. Mitchell, and A. J. Friedland, “Sulfur species behavior in soil organic matter during decomposition,” J. Geophys. Res.: Biogeosci. 112, 1–10 (2007). https://doi.org/10.1029/2007JG000538

    Article  Google Scholar 

  43. R. Schulin, A. Johnson, and E. Frossard, “Trace element–deficient soils,” in Trace Elements in Soils, Ed. by P. S. Hooder (Blackwell, Oxford, 2010), pp. 175–194. https://doi.org/10.1002/9781444319477.ch9

    Book  Google Scholar 

  44. E. Schulte, Understanding plant nutrients, soil and applied Zn. http://learningstore.uwex.edu/Assets/pdfs/ A2528.pdf (2004).

  45. C. M. Scott, “Background metal concentration in soils in northern Santa Clara County, California,” in Recent Geologic Studies in the San Francisco Bay Area, Ed. by E. M. Sanginés, D. W. Anderson, and A. V. Buising (Pacific Section Society for Sedimentary Geology, Los Angeles, CA, 1995), Vol. 76, pp. 217–224.

    Google Scholar 

  46. S. Shoji, M. Nanzyo, and R. A. Dahlgren, Volcanic Ash Soils, Genesis, Properties and Utilization, Developments in Soil Science no. 21 (Elsevier, Amsterdam, 1993).

  47. Soil Survey Staff, Soil Survey Laboratory Methods Manual. Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey, Version 3.0, Soil Survey Investigation Report no. 42, (US Department of Agriculture, Washington, DC, 1996).

  48. A. Soukoup, B. J. Buck, and W. Harris, “Preparing soils for mineralogical analyses,” in Methods of Soil Analysis, Part 5: Mineralogical Methods, SSSA Book Series no. 5, Ed. by A. L. Ulery and L. R. Drees (Soil Science Society of America, Madison, WI, 2008), pp. 13–31. https://doi.org/10.2136/sssabookser5.5.c2

    Chapter  Google Scholar 

  49. A. Takeda, K. Kimura, and S. I. Yamasaki, “Analysis of 57 elements in Japanese soils, with special reference to soil group, and agricultural use,” Geoderma 119, 291–307 (2004). https://doi.org/10.1016/j.geoderma.2003.08.006

    Article  Google Scholar 

  50. S. M. Testa, “Sources of chromium contamination in soil and groundwater,” in Chromium (VI) Handbook, Ed. by J. Guertin, J. A. Jacobs, and C. P. Avakian (CRC Press, Boca Raton, FL, 2005), pp. 144–163. https://doi.org/10.1201/9780203487969.ch4

    Google Scholar 

  51. B. P. K. Yerima and E. van Ranst, Major Soil Classification Systems Used in the Tropics: Soils of Cameroon (Trafford, Victoria, BC, 2005).

  52. B. P. K. Yerima, E. van Ranst, S. Sertsu, and A. Verdoodt, “Pedogenic impacts on the distribution of total and available Fe, Mn, Cu, Zn, Cd, Pb and Co contents of Vertisols and vertic Inceptisols of the Bale Mountain area of Ethiopia,” Afr. J. Agric. Res. 8 (44), 5429–5439 (2013). https://doi.org/10.5897/AJAR09.188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Kogge Enang.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roger Kogge Enang, Bernard Palmer Kfuban Yerima, Georges Kogge Kome et al. Trace Elements in Tephra Soils of Mounts Kupe and Manengouba (Cameroon). Eurasian Soil Sc. 53, 595–606 (2020). https://doi.org/10.1134/S1064229320050051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320050051

Keywords:

Navigation