Skip to main content
Log in

The Dynamics of Soil Microbial Communities on Different Timescales: A Review

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil microbial communities are subjected to significant changes over time. The most rapid changes caused by temperature and soil moisture alternations or the by the inflow of fresh organic matter occur during the several hours or days. They are mostly related to the soil microbial activity. Seasonal dynamics are caused by annual variations in temperature and precipitation that affect the microbial community directly or indirectly through the regulation of plant life. The microbial biomass and the taxonomic composition of soil microbial communities vary significantly throughout the year, which should be taken into account when sampling for a comparative analysis of different soils. The long-term dynamics of microbial communities during primary or secondary successions lead to an increase in the total microbial biomass and the fungi/bacteria ratio, as well as to changes in the taxonomic composition of microbial communities. The main factors of the long-term dynamics are the accumulation of soil organic matter, plant successions, and changes in pH. The diversity of microbial communities during long-term dynamics can vary in different ways and does not follow a single trend. The longest dynamics of soil microbial communities are associated with changes in bioclimatic conditions. Information about soil microbial communities of the past can be obtained by studying buried and permafrost soils. The study of future changes in soil microbial communities is possible in experiments with artificial changes in climatic parameters. Plants are a significant factor in the dynamics of soil microbial communities on all timescales; in short-term periods, the major role is played by the activity of plants; in the long-term trends, the changes in the vegetation abundance and diversity are the most important factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. V. Borisov, T. S. Demkina, and V. A. Demkin, Paleosols and Climate of Yergeni in the Bronze Age, 4th–2nd Millennia BC (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  2. A. M. Glushakova, A. V. Kachalkin, and I. Yu. Chernov, “The Influence of Aster salignus Willd. invasion on the diversity of soil yeast communities,” Eurasian Soil Sci. 49, 792–796 (2016).

    Article  Google Scholar 

  3. V. A. Demkin, A. V. Borisov, T. S. Demkina, T. E. Khomutova, B. N. Zolotareva, N. N. Kashirskaya, and E. V. Demkina, “Steppe pyramids of Eurasia: unique archive of Holocene paleosols,” in Paleosols and Indicators of Continental Weathering and History of Biosphere (Moscow, 2010), pp. 132–163.

  4. T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, I. V. Stretovich, and V. A. Demkin, “Microbiological investigations of paleosols of archeological monuments in the steppe zone,” Eurasian Soil Sci. 43, 194–201 (2010).

    Article  Google Scholar 

  5. I. V. Ivanov, L. S. Pesochina, and V. M. Semenov, “Biological mineralization of organic matter in the modern virgin and plowed chernozems, buried chernozems, and fossil chernozems,” Eurasian Soil Sci. 42, 1109–1119 (2009).

    Article  Google Scholar 

  6. N. N. Kashirskaya, T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “The microbial biomass in paleosols buried under kurgans and in recent soils in the steppe zone of the Lower Volga region,” Eurasian Soil Sci. 42, 536–543 (2009).

    Article  Google Scholar 

  7. I. O. Korvigo, E. V. Pershina, E. A. Ivanova, N. S. Matyuk, O. A. Savos’kina, E. L. Chirak, N. A. Provorov, and E. E. Andronov, “Effect of long-term application of agrotechnical techniques and crops on soil microbial communities,” Microbiology (Moscow) 85, 231–242 (2016).

    Article  Google Scholar 

  8. N. A. Manucharova, A. N. Vlasenko, E. V. Men’ko, and D. G. Zvyagintsev, “Specificity of the chitinolytic microbial complex of soils incubated at different temperatures,” Microbiology (Moscow) 80, 205–215 (2011).

    Article  Google Scholar 

  9. O. E. Marfenina, D. S. Sakharov, A. E. Ivanova, and A. V. Rusakov, “Mycological complexes in Holocene and Late Pleistocene paleohorizons and in fragments of paleosols,” Eurasian Soil Sci. 42, 432–439 (2009).

    Article  Google Scholar 

  10. T. E. Khomutova, N. N. Kashirskaya, and V. A. Demkin, “Assessment of the living and total biomass of microbial communities in the background chestnut soil and in the paleosols under burial mounds,” Eurasian Soil Sci. 44, 1373–1380 (2011).

    Article  Google Scholar 

  11. T. I. Chernov, A. D. Zhelezova, O. V. Kutovaya, A. O. Makeev, A. K. Tkhakakhova, N. A. Bgazhba, F. G. Kurbanova, A. V. Rusakov, T. A. Puzanova, and O. S. Khokhlova, “Comparative analysis of the structure of buried and surface soils by analysis of microbial DNA,” Microbiology (Moscow) 87, 833–841 (2018). https://doi.org/10.1134/S0026261718060073

    Article  Google Scholar 

  12. T. I. Chernov, A. K. Tkhakakhova, E. A. Ivanova, O. V. Kutovaya, and V. I. Turusov, “Seasonal dynamics of the microbiome of chernozems of the long-term agrochemical experiment in Kamennaya Steppe,” Eurasian Soil Sci. 48, 1349–1353 (2015). https://doi.org/10.1134/S1064229315120054

    Article  Google Scholar 

  13. A. M. Yaroslavtsev, N. A. Manucharova, A. L. Stepanov, D. G. Zvyagintsev, and I. I. Sudnitsyn, “Microbial destruction of chitin in soils under different moisture conditions,” Eurasian Soil Sci. 42, 797–806 (2009).

    Article  Google Scholar 

  14. M. V. Semenov, D. A. Nikitin, A. L. Stepanov, and V. M. Semenov, “The structure of bacterial and fungal communities in the rhizosphere and root-free loci of gray forest soil,” Eurasian Soil Sci. 52, 319–332 (2019).

    Article  Google Scholar 

  15. D. Berkelmann, D. Schneider, M. Engelhaupt, M. Heinemann, S. Christel, M. Wijayanti, A. Meryandini, and R. Daniel, “How rainforest conversion to agricultural systems in Sumatra (Indonesia affects active soil bacterial communities,” Front. Microbiol. 9, 2381 (2018).https://doi.org/10.3389/fmicb.2018.02381

    Article  Google Scholar 

  16. A. Bevivino, P. Paganin, G. Bacci, A. Florio, M. S. Pellicer, M. C. Papaleo, A. Mengoni, L. Ledda, R. Fani, A. Benedetti, and C. Dalmastri, “Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region,” PLoS One 9 (8), e105515 (2014).

    Article  Google Scholar 

  17. E. V. Blagodatskaya, O. S. Khokhlova, T. H. Anderson, and S. A. Blagodatskii, “Extractable microbial DNA pool and microbial activity in paleosols of Southern Urals,” Microbiology (Moscow) 72, 750–755 (2003).

    Article  Google Scholar 

  18. S. P. Brown and A. Jumpponen, “Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils,” Mol. Ecol. 23 (2), 481–497 (2014).

    Article  Google Scholar 

  19. D. H. Buckley and T. M. Schmidt, “Diversity and dynamics of microbial communities in soils from agro-ecosystems,” Environ. Microbiol. 5 (6), 441–452 (2003).

    Article  Google Scholar 

  20. E. Buscardo, J. Geml, S. K. Schmidt, H. Freitas, H. B. Cunha, and L. Nagy, “Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology,” Sci. Rep. 8 (1), 4382 (2018).

    Article  Google Scholar 

  21. P. Carini, P. J. Marsden, J. W. Leff, E. E. Morgan, M. S. Strickland, and N. Fierer, “Relic DNA is abundant in soil and obscures estimates of soil microbial diversity,” Nat. Microbiol. 2 (3), 16242 (2017).

    Article  Google Scholar 

  22. S. C. Castle, B. W. Sullivan, J. Knelman, E. Hood, D. R. Nemergut, S. K. Schmidt, and C. C. Cleveland, “Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development,” Oecologia 185 (3), 513–524 (2017).

    Article  Google Scholar 

  23. D. P. Chandler, F. J. Brockman, T. J. Bailey, and J. K. Fredrickson, “Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol,” Microb. Ecol. 36 (1), 37–50 (1998).

    Article  Google Scholar 

  24. C. C. Chang and B. L. Turner, “Ecological succession in a changing world,” J. Ecol. 107 (2), 503–509 (2019). https://doi.org/10.1111/1365-2745.13132

    Article  Google Scholar 

  25. S. Ciccazzo, A. Esposito, L. Borruso, and L. Brusetti, “Microbial communities and primary succession in high altitude mountain environments,” Ann. Microbiol. 66 (1), 43–60 (2016).

    Article  Google Scholar 

  26. M. J. Coolen, J. van de Giessen, E. Y. Zhu, and C. Wuchter, “Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw,” Environ. Microbiol. 13 (8), 2299–2314 (2011).

    Article  Google Scholar 

  27. K. M. DeAngelis, G. Pold, B. D. Topçuoğlu, L. T. van Diepen, R. M. Varney, J. L. Blanchard, J. Melillo, and S. D. Frey, “Long-term forest soil warming alters microbial communities in temperate forest soils,” Front. Microbiol. 6, 104 (2015).

    Article  Google Scholar 

  28. J. M. DeBruyn, L. T. Nixon, M. N. Fawaz, A. M. Johnson, and M. Radosevich, “Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil,” Appl. Environ. Microbiol. 77, 6295–6300 (2011).

    Article  Google Scholar 

  29. M. Delgado-Baquerizo, R. D. Bardgett, P. M. Vitousek, F. T. Maestre, M. A. Williams, D. J. Eldridge, et al., “Changes in belowground biodiversity during ecosystem development,” Proc. Natl. Acad. Sci. U.S.A. 116 (14), 201818400 (2019). https://doi.org/10.1073/pnas.1818400116

    Article  Google Scholar 

  30. M. Delgado-Baquerizo, A. M. Oliverio, T. E. Brewer, A. Benavent-González, D. J. Eldridge, R. D. Bardgett, F. T. Maestre, B. K. Singh, and N. Fierer, “A global atlas of the dominant bacteria found in soil,” Science 359 (6373), 320–325 (2018).

    Article  Google Scholar 

  31. J. R. Deslippe, M. Hartmann, S. W. Simard, and W. W. Mohn, “Long-term warming alters the composition of Arctic soil microbial communities,” FEMS Microbiol. Ecol. 82 (2), 303–315 (2012).

    Article  Google Scholar 

  32. N. B. Devi and P. S. Yadava, “Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India,” Appl. Soil Ecol. 31 (3), 220–227 (2006).

    Article  Google Scholar 

  33. K. A. Edwards and R. L. Jefferies, “Inter-annual and seasonal dynamics of soil microbial biomass and nutrients in wet and dry low-Arctic sedge meadows,” Soil Biol. Biochem. 57, 83–90 (2013.

    Article  Google Scholar 

  34. D. Epron, V. Le Dantec, E. Dufrene, and A. Granier, “Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest,” Tree Physiol. 21 (2–3), 145–152 (2001).

    Article  Google Scholar 

  35. A. Esposito, S. Ciccazzo, L. Borruso, S. Zerbe, D. Daffonchio, and L. Brusetti, “A three-scale analysis of bacterial communities involved in rocks colonization and soil formation in high mountain environments,” Curr. Microbiol. 67 (4), 472–479 (2013).

    Article  Google Scholar 

  36. N. Fierer and R. B. Jackson, “The diversity and biogeography of soil bacterial communities,” Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).

    Article  Google Scholar 

  37. S. Fontaine, A. Mariotti, and L. Abbadie, “The priming effect of organic matter: a question of microbial competition?” Soil Biol. Biochem. 35 (6), 837–843 (2003).

    Article  Google Scholar 

  38. S. D. Frey, R. Drijber, H. Smith, and J. Melillo, “Microbial biomass, functional capacity, and community structure after 12 years of soil warming,” Soil Biol. Biochem. 40 (11), 2904–2907 (2008).

    Article  Google Scholar 

  39. R. I. Griffiths, B. C. Thomson, P. James, T. Bell, M. Bailey, and A. S. Whiteley, “The bacterial biogeography of British soils,” Environ. Microbiol. 13, 1642–1654 (2011).

    Article  Google Scholar 

  40. N. Gunapala and K. M. Scow, “Dynamics of soil microbial biomass and activity in conventional and organic farming systems,” Soil Biol. Biochem. 30 (6), 805–816 (1998).

    Article  Google Scholar 

  41. M. Hartmann, C. G. Howes, D. VanInsberghe, H. Yu, D. Bachar, R. Christen, R. Henrik Nilsson, S. J. Hallam, and W. W. Mohn, “Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests,” ISME J. 6 (12), 2199–2218 (2012).

    Article  Google Scholar 

  42. M. Hartmann, S. Lee, S. J. Hallam, and W. W. Mohn, “Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands,” Environ. Microbiol. 11 (12), 3045–3062 (2009).

    Article  Google Scholar 

  43. J. N. Hendershot, Q. D. Read, J. A. Henning, N. J. Sanders, and A. T. Classen, “Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales,” Ecology 98 (7), 1757–1763 (2017).

    Article  Google Scholar 

  44. K. Hofmann and P. Illmer, “Temporal patterns of prokaryotic abundance, community structure and microbial activity in glacier foreland soils,” Antonie Leeuwenhoek 108 (3), 793–799 (2015).

    Article  Google Scholar 

  45. K. Isobe, H. Oka, T. Watanabe, R. Tateno, R. Urakawa, C. Liang, K. Senoo, and H. Shibata, “High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest,” Soil Biol. Biochem. 124, 90–100 (2018).

    Article  Google Scholar 

  46. K. Jangid, M. A. Williams, A. J. Franzluebbers, J. M. Blair, D. C. Coleman, and W. B. Whitman, “Development of soil microbial communities during tallgrass prairie restoration,” Soil Biol. Biochem. 42 (2), 302–312 (2010).

    Article  Google Scholar 

  47. J. K. Jansson and N. Taş, “The microbial ecology of permafrost,” Nat. Rev. Microbiol. 12 (6), 414 (2014).

    Article  Google Scholar 

  48. N. Kennedy, E. Brodie, J. Connolly, and N. Clipson, “Seasonal influences on fungal community structure in unimproved and improved upland grassland soils,” Can. J. Microbiol. 52 (7), 689–694 (2006).

    Article  Google Scholar 

  49. D. G. Kim, R. Vargas, B. Bond-Lamberty, and M. R. Turetsky, “Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research,” Biogeosciences 9 (7), 2459–2483 (2012).

    Article  Google Scholar 

  50. R. Kuhnert, I. Oberkofler, and U. Peintner, “Fungal growth and biomass development is boosted by plants in snow-covered soil,” Microb. Ecol. 64 (1), 79–90 (2012).

    Article  Google Scholar 

  51. Y. Kuzyakov and E. Blagodatskaya, “Microbial hotspots and hot moments in soil: concept & review,” Soil Biol. Biochem. 1 (83), 184–199 (2015). https://doi.org/10.1016/j.soilbio.2015.01.025

    Article  Google Scholar 

  52. G. V. Lacerda-Júnior, M. F. Noronha, L. Cabral, T. P. Delforno, S. T. de Sousa, P. I. Fernandes Jr., I. S. Melo, and V. M. Oliveira, “Land use and seasonal effects on the soil microbiome of a brazilian dry forest,” Front. Microbiol. 10, 548 (2019). https://doi.org/10.3389/fmicb.2019.00648

    Article  Google Scholar 

  53. C. L. Lauber, K. S. Ramirez, Z. Aanderud, J. Lennon, and N. Fierer, “Temporal variability in soil microbial communities across land-use types,” ISME J. 7 (8), 1641–1650 (2013).

    Article  Google Scholar 

  54. P. P. J. Lim, K. K. Newsham, P. Convey, H. M. Gan, W. C. Yew, and G. Y. A. Tan, “Effects of field warming on a High Arctic soil bacterial community: a metagenomic analysis,” Curr. Sci. 115 (9), 1697–1700 (2018).

    Article  Google Scholar 

  55. Y. T. Lin, K. Jangid, W. B. Whitman, D. C. Coleman, and C. Y. Chiu, “Soil bacterial communities in native and regenerated perhumid montane forests,” Appl. Soil Ecol. 47 (2), 111–118 (2011). https://doi.org/10.1016/j.apsoil.2010.11.008

    Article  Google Scholar 

  56. D. A. Lipson, “Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients,” FEMS Microbiol. Ecol. 59, 418–427 (2007).

    Article  Google Scholar 

  57. Y. Liu, M. Lu, X. Zhang, Q. Sun, R. Liu, and B. Lian, “Shift of the microbial communities from exposed sandstone rocks to forest soils during pedogenesis,” Int. Biodeterior. Biodegrad. 140, 21–28 (2019).

    Article  Google Scholar 

  58. M. Lupatini, A. K. Suleiman, R. J. Jacques, L. N. Lemos, V. S. Pylro, J. A. van Veen, E. E. Kuramae, and L. F. Roesch, “Moisture is more important than temperature for assembly of both potentially active and whole prokaryotic communities in subtropical grassland,” Microb. Ecol. 77 (2), 460–470 (2019).

    Article  Google Scholar 

  59. A. Makeev, E. Aseyeva, A. Rusakov, K. Sorokina, T. Puzanova, O. Khokhlova, P. Kust, F. Kurbanova, T. Chernov, O. Kutovaya, and M. Lebedeva, “The environment of the Early Iron Age at the southern fringe of the forest zone of the Russian Plain,” Quat. Int. 502, 218–237 (2019). https://doi.org/10.1016/j.quaint.2018.04.002

    Article  Google Scholar 

  60. N. A. Manucharova, “The microbial destruction of chitin, pectin, and cellulose in soils,” Eurasian Soil Sci. 42, 1526–1532 (2009).

    Article  Google Scholar 

  61. M. E. McClain, E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, and W. H. McDowell, “Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems,” Ecosystems 6 (4), 301–312 (2003).

    Article  Google Scholar 

  62. K. L. McGuire, H. D’Angelo, F. Q. Brearley, S. M. Gedallovich, N. Babar, N. Yang, C. M. Gillikin, R. Gradoville, C. Bateman, B. L. Turner, P. Mansor, J. W. Leff, and N. Fierer, “Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests,” Microb. Ecol. 69 (4), 733–747 (2015). https://doi.org/10.1007/s00248-014-0468-4

    Article  Google Scholar 

  63. P. M. Medeiros, M. F. Fernandes, R. P. Dick, and B. R. T. Simoneit, “Seasonal variations in sugar contents and microbial community in a ryegrass soil,” Chemosphere 65, 832–839 (2006).

    Article  Google Scholar 

  64. M. Moche, J. Gutknecht, E. Schulz, U. Langer, and J. Rinklebe, “Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils,” Soil Biol. Biochem. 90, 169–178 (2015).

    Article  Google Scholar 

  65. A. A. Navarrete, S. M. Tsai, L. W. Mendes, K. Faust, M. de Hollander, N. A. Cassman, J. Raes, J. A. van Veen, and E. E. Kuramae, “Soil microbiome responses to the short-term effects of Amazonian deforestation,” Mol. Ecol. 24 (10), 2433–2448 (2015). https://doi.org/10.1111/mec.13172

    Article  Google Scholar 

  66. D. Naylor, S. DeGraaf, E. Purdom, and D. Coleman-Derr, “Drought and host selection influence bacterial community dynamics in the grass root microbiome,” ISME J. 11 (12), 2691–2704 (2017).

    Article  Google Scholar 

  67. R. Ortiz-Álvarez, N. Fierer, A. de los Ríos, E. O. Casamayor, and A. Barberán, “Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession,” ISME J. 12 (7), 1658–1667 (2018).

    Article  Google Scholar 

  68. S. M. Ozerskaya, G. A. Kochkina, N. E. Ivanushkina, and D. A. Gilichinsky, “Fungi in permafrost,” in Permafrost Soils, Ed. by R. Margesin (Springer-Verlag, New York, 2009), pp. 85–95.

    Google Scholar 

  69. F. Rasche, D. Knapp, C. Kaiser, M. Koranda, B. Kitzler, S. Zechmeister-Boltenstern, A. Richter, and A. Sessitsch, “Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest,” ISME J. 5, 389–402 (2011).

    Article  Google Scholar 

  70. R. Rinnan, A. Michelsen, E. Bååth, and S. Jonasson, “Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem,” Global Change Biol. 13 (1), 28–39 (2007).

    Article  Google Scholar 

  71. B. F. Rogers and R. L. Tate, “Temporal analysis of the soil microbial community along a toposequence in Pineland soils,” Soil Biol. Biochem. 33, 1389–1401 (2001).

    Article  Google Scholar 

  72. A. Rusakov, A. Makeev, O. Khokhlova, P. Kust, M. Lebedeva, T. Chernov, A. Golyeva, A. Popov, F. Kurbanova, and T. Puzanova, “Paleoenvironmental reconstruction based on soils buried under Scythian fortification in the southern forest-steppe area of the East European Plain,” Quat. Int. 502, 197–217 (2019). https://doi.org/10.1016/j.quaint.2018.05.016

    Article  Google Scholar 

  73. C. W. Schadt, A. P. Martin, D. A. Lipson, and S. K. Schmidt, “Seasonal dynamics of previously unknown fungal lineages in tundra soils,” Science 301 (5638), 1359–1361 (2003).

    Article  Google Scholar 

  74. S. K. Schmidt, E. K. Costello, D. R. Nemergut, C. C. Cleveland, S. C. Reed, M. N. Weintraub, A. F. Meyer, and A. M. Martin, “Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil,” Ecology 88 (6), 1379–1385 (2007).

    Article  Google Scholar 

  75. S. K. Schmidt, D. R. Nemergut, J. L. Darcy, and R. Lynch, “Do bacterial and fungal communities assemble differently during primary succession?” Mol. Ecol. 23 (2), 254–258 (2014).

    Article  Google Scholar 

  76. D. Schneider, M. Engelhaupt, K. Allen, S. Kurniawan, V. Krashevska, M. Heinemann, H. Nacke, M. Wijayanti, A. Meryandini, M. D. Corre, and S. Scheu, “Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia),” Front. Microbiol. 6, 1339 (2015). https://doi.org/10.3389/fmicb.2015.01339

    Article  Google Scholar 

  77. M. V. Semenov, T. I. Chernov, A. K. Tkhakakhova, A. D. Zhelezova, E. A. Ivanova, T. V. Kolganova, and O. V. Kutovaya, “Distribution of prokaryotic communities throughout the chernozem profiles under different land uses for over a century,” Appl. Soil Ecol. 127, 8–18 (2018). https://doi.org/10.1016/j.apsoil.2018.03.002

    Article  Google Scholar 

  78. A. Shade, J. G. Caporaso, J. Handelsman, R. Knight, and N. Fierer, “A meta-analysis of changes in bacterial and archaeal communities with time,” ISME J. 7 (8), 1493–1506 (2013).

    Article  Google Scholar 

  79. S. G. Shanmugam and W. L. Kingery, “Changes in soil microbial community structure in relation to plant succession and soil properties during 4000 years of pedogenesis,” Eur. J. Soil Biol. 88, 80–88 (2018). https://doi.org/10.1016/j.ejsobi.2018.07.003

    Article  Google Scholar 

  80. P. Shao, C. Liang, K. Rubert-Nason, X. Li, H. Xie, and X. Bao, “Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter,” Soil Biol. Biochem. 128, 56–65 (2019).

    Article  Google Scholar 

  81. T. Skogland, S. Lomeland, and J. Goksøyr, “Respiratory burst after freezing and thawing of soil: experiments with soil bacteria,” Soil Biol. Biochem. 20 (6), 851–856 (1988).

    Article  Google Scholar 

  82. H. Sun, Y. Wu, J. Zhou, and H. Bing, “Variations of bacterial and fungal communities along a primary successional chronosequence in the Hailuogou glacier retreat area (Gongga Mountain, SW China),” J. Mt. Sci. 13 (9), 1621–1631 (2016). https://doi.org/10.1007/s11629-015-3570-2

    Article  Google Scholar 

  83. E. A. Susyan, S. Wirth, N. D. Ananyeva, and E. V. Stolnikova, “Forest succession on abandoned arable soils in European Russia—Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity,” Eur. J. Soil Biol. 47 (3), 169–174 (2011).

    Article  Google Scholar 

  84. S. Terrat, W. Horrigue, S. Dequietd, N. P. Saby, M. Lelièvre, V. Nowak, et al., “Mapping and predictive variations of soil bacterial richness across France,” PLoS One 12 (10), e0186766 (2017). https://doi.org/10.1371/journal.pone.0186766

    Article  Google Scholar 

  85. B. M. Tripathi, D. P. Edwards, L. W. Mendes, M. Kim, K. Dong, H. Kim, and J. M. Adams, “The impact of tropical forest logging and oil palm agriculture on the soil microbiome,” Mol. Ecol. 25 (10), 2244–2257 (2016).

    Article  Google Scholar 

  86. R. Upchurch, C. Y. Chiu, K. Everett, G. Dyszynski, D. C. Coleman, and W. B. Whitman, “Differences in the composition and diversity of bacterial communities from agricultural and forest soils,” Soil Biol. Biochem. 40 (6), 1294–1305 (2008).

    Article  Google Scholar 

  87. S. Uroz, J. J. Tech, N. A. Sawaya, P. Frey-Klett, and J. H. Leveau, “Structure and function of bacterial communities in ageing soils: insights from the Mendocino ecological staircase,” Soil Biol. Biochem. 69, 265–274 (2014).

    Article  Google Scholar 

  88. M. P. Waldrop and M. K. Firestone, “Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions,” Biogeochemistry 67, 235–248 (2004).

    Article  Google Scholar 

  89. M. Welc, E. K. Bünemann, A. Fließbach, E. Frossard, and J. Jansa, “Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling,” Soil Biol. Biochem. 49, 184–192 (2012).

    Article  Google Scholar 

  90. H. Wu, D. H. Xiong, L. Xiao, S. Zhang, Y. Yuan, Z. A. Su, B. Zhang, and D. Yang, “Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region,” J. Mt. Sci. 15 (7), 1546–1558 (2018).

    Article  Google Scholar 

  91. X. Wu, W. Zhang, G. Liu, X. Yang, P. Hu, T. Chen, G. Zhang, and Z. Li, “Bacterial diversity in the foreland of the Tianshan no. 1 glacier, China,” Environ. Res. Lett. 7 (1), 14038 (2012). https://doi.org/10.1088/1748-9326/7/1/014038

    Article  Google Scholar 

  92. B. Xu, J. Wang, N. Wu, Y. Wu, and F. Shi, “Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai–Tibet Plateau, China,” Biogeosciences 15 (2), 567–579 (2018).

    Article  Google Scholar 

  93. S. A. Yarwood and M. N. Högberg, “Soil bacteria and archaea change rapidly in the first century of Fennoscandian boreal forest development,” Soil Biol. Biochem. 114, 160–167 (2017).

    Article  Google Scholar 

  94. X. Zhang, W. Wang, W. Chen, N. Zhang, and H. Zeng, “Comparison of seasonal soil microbial process in snow-covered temperate ecosystems of northern China,” PLoS One 9 (3), e92985 (2014). https://doi.org/10.1371/journal.pone.0092985

    Article  Google Scholar 

  95. A. Zhelezova, T. Chernov, A. Tkhakakhova, N. Xenofontova, M. Semenov, and O. Kutovaya, “Prokaryotic community shifts during soil formation on sands in the tundra zone,” PLoS One 14 (4), e0206777 (2019). https://doi.org/10.1371/journal.pone.0206777

    Article  Google Scholar 

  96. Z. Zhou, C. Wang, L. Jiang, and Y. Luo, “Trends in soil microbial communities during secondary succession,” Soil Biol. Biochem. 115, 92–99 (2017).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 17-16-01057 “Monitoring and forecasting the dynamics of the soil microbiome in different timescales.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Chernov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, T.I., Zhelezova, A.D. The Dynamics of Soil Microbial Communities on Different Timescales: A Review. Eurasian Soil Sc. 53, 643–652 (2020). https://doi.org/10.1134/S106422932005004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932005004X

Keywords:

Navigation