Skip to main content
Log in

The biotic condition of dams run-of-the-river in sequence: adaptation of a multimetric index based on the Neotropical fish fauna

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The synergistic effects of run-of-the-river (ROR) on fish fauna, though still poorly understood, are amplified when dams form reservoir cascades. In an attempt to assist in this understanding, we used an adaptation of the Reservoir Fish Assemblage Index (RFAI) to evaluate the biotic conditions of the Rio das Antas Energy Complex, in the Neotropical Patos Lagoon ecoregion. We evaluated the attributes of the fish fauna from the point of view of the complex, for each reservoir and between different sections. Fish samplings were performed quarterly at nine sites for 2 years (2015–2017). We proposed 26 metrics, related to aspects of composition, reproduction, feeding, habitat, and tolerance, selected based on criteria of variability, responsiveness, and redundancy. The final RFAI score was distributed in four categories of biological status, based on the best-observed condition. Eight metrics composed the final index, among which, only the proportion of nektonic individuals + nektobenthic (PNNbI) correlated with all sections. The final RFAI was classified as poor in all sections of the reservoir cascade, showing no significant differences between the sampling sites. This scenario indicates that dams in sequence intensify and homogenize the amplitude of fragmentation impacts on fish fauna. The final RFAI proved to be representative of the transition sections, emphasizing the importance of these reaches in impounded environments. Although the disturbance scales presented here are applicable mainly to ROR systems with reduced discharge section, the index was developed so as to allow its replicability in any dammed water course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agostinho, A. A., Miranda, L. E., Bini, L. M., Gomes, L. C., Magela Thomaz, S., & Suzuki, H. I. (1999). Patterns of colonization in Neotropical reservoirs and prognoses onaging. In J. G. Tundisi & M. Straškraba (Eds.), Theoretical reservoir ecology and its applications (pp. 227–265). Leiden: Backhuys Publishers.

  • Agostinho, A. A., Gomes, L. C., & Pelicice, F. M. (2007). Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá: EDUEM.

    Google Scholar 

  • Agostinho, A. A., Pelicice, F. M., & Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4), 1119–1132. https://doi.org/10.1590/S1519-69842008000500019.

    Article  CAS  Google Scholar 

  • Agostinho, A. A., Gomes, L. C., Santos, N. C. L., Ortega, J. C. G., & Pelicice, F. M. (2016). Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research, 173, 26–36. https://doi.org/10.1016/j.fishres.2015.04.006.

    Article  Google Scholar 

  • Anderson, D., Moggridge, H., Shucksmith, J. D., & Warren, P. H. (2015). Quantifying the impact of water abstraction for low head ‘run of the river’ hydropower on localized river channel hydraulic and benthic macroinvertebrates. River Research and Applications, 33(2), 202–213. https://doi.org/10.1002/rra.2992.

    Article  Google Scholar 

  • Araújo, F. G., Fichberg, I., Carvalho, B. T. P., & Peixoto, M. G. (2003). Preliminary index of biotic integrity for monitoring the condition of the Rio Paraiba do Sul, Southeast Brazil. Environmental Management, 32(4), 516–526. https://doi.org/10.1007/s00267-003-3003-9.

    Article  Google Scholar 

  • Becker, F. G., De Fries, L. C. C., Ferrer, J., Bertaco, V. A., Luz-Agostinho, K. D. G., Silva, J. F. P., et al. (2013). Fishers of the Taquari-Antas river basian (Patos Lagoon basian), southern Brazil. Brazilian Journal of Biology, 73(1), 79–90. https://doi.org/10.1590/S1519-69842013000100010.

    Article  CAS  Google Scholar 

  • Betancur-R, R., Broughton, R. E., Wiley, E. O., Carpenter, K., López, J. A., Li, C., et al. (2013). The tree of life and a new classification of bony fishes. PLoS Currents. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.

  • Borba, C. S., Latini, J. D., Baumgartner, M. T., Gomes, L. C., & Agostinho, A. A. (2019). Short-term effects in a reduced flow stretch: The case of the Antas River in South Brazil. River Research and Applications, 1–10.

  • Bozzetti, M., & Schulz, U. H. (2004). An index of biotic integrity based on fish assemblages for subtropical streams in southern Brazil. Hydrobiologia, 529(1–3), 133–144. https://doi.org/10.1007/s10750-004-5738-6.

    Article  Google Scholar 

  • Casatti, L., Langeani, F., & Castro, R. M. C. (2001). Peixes de riacho do parque estadual do morro do diabo, bacia do alto do rio Paraná, SP. Biota Neotropica, 1(1–2), 1–15. https://doi.org/10.1590/S1676-06032001000100005.

    Article  Google Scholar 

  • Chen, K., Hughes, R. M., Brito, J. G., Leal, C. G., Leitão, R. P., Oliveira-Júnior, J. M. B., et al. (2017). A multi-assemblage, multi-metric biological condition index for eastern Amazonia streams. Ecological Indicators, 78, 48–61. https://doi.org/10.1016/j.ecolind.2017.03.003.

    Article  Google Scholar 

  • Delariva, R. L., Hahn, N. S., & Kashiwaqui, E. A. L. (2013). Diet and trophic structure of the fish fauna in a subtropical ecosystem: Impoundment effects. Neotropical Ichthyology, 11(4), 891–904. https://doi.org/10.1590/S1679-62252013000400017.

    Article  Google Scholar 

  • Ferreira, C. P., & Casatti, L. (2006). Integridade biótica de um córrego na bacia do Alto Rio Paraná avaliada por meio da comunidade de peixes. Biota Neotropica, 6(3).

  • Ferreira, F. C., Souza, U. P., & Petrere Jr., M. (2015). Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs. Acta Limnologica Brasiliensia, 27(3), 289–300. https://doi.org/10.1590/S2179-975X4514.

    Article  Google Scholar 

  • Fisch, F., Branco, J. O., & Menezes, J. T. (2016). Ictiofauna como indicador da integridade biótica de um ambiente de estuário. Acta Biológica Colombiana, 21(1), 27–38. https://doi.org/10.15446/abc.v21n1.46151.

    Article  Google Scholar 

  • Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler (FEPAM). (2009). Qualidade das águas da bacia hidrográfica do rio das Antas e rio Taquari. http://www.fepam.rs.gov.br/qualidade/qualidade_taquari_antas/taquariantas.asp. .

  • Ganasan, V., & Hughes, R. M. (1998). Application of an index of biological integrity (IBI) to fish assemblages of the rivers Khan and Kshipra (Madhya, Pradesh), India. Freshwater Biology, 40(2), 367–383. https://doi.org/10.1046/j.1365-2427.1998.00347.x.

    Article  Google Scholar 

  • Google Inc. (2017). Google Earth Pro. versão 7.3. Retrieved from http://www.google.com/earth.

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hering, D., Feld, C. K., Moog, O., & Ofenböck, T. (2006). Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: Experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia, 566, 311–324. https://doi.org/10.1007/s10750-006-0087-2.

    Article  Google Scholar 

  • Hughes, R. M., & Oberdof, T. (1999). Applications of IBI concepts and metric to waters outside the United States and Canada. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish (pp. 79–93). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hugueny, B., Camara, S., Samoura, B., & Magassouba, M. (1996). Applying an index of biotic integrity based on fish assemblages in a West African river. Hydrobiologia, 331(1–3), 71–78. https://doi.org/10.1007/BF00025409.

    Article  Google Scholar 

  • Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214. https://doi.org/10.2307/1939574.

    Article  Google Scholar 

  • Jennings, M. J., Fore, L. S., & Karr, J. R. (1995). Biological monitoring of fish assemblages in Tennessee Valley reservoirs. Regulated Rivers: Research & Management, 11(3–4), 263–274. https://doi.org/10.1002/rrr.3450110303.

    Article  Google Scholar 

  • Júlio Jr., H. F., Tós, C. D., Agostinho, A. A., & Pavanelli, C. A. (2009). A massive invasion of fish species after eliminating a natural barrier in the Upper Rio Paraná basin. Neotropical Ichthyology, 7(4), 709–718. https://doi.org/10.1590/S1679-62252009000400021.

    Article  Google Scholar 

  • Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21–27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2.

    Article  Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters: Better biological monitoring (200 pp). Washington, DC: Island Press.

    Google Scholar 

  • Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity in running waters: A method and its rationale (Vol. 5, 28 pp). Champaign, IL: Illinois Natural Survey Special Publication.

    Google Scholar 

  • Kennard, M. J., Arthington, A. H., Pusey, B. J., & Harch, B. D. (2005). Are alien fish a reliable indicator of river health? Freshwater Biology, 50(1), 174–193. https://doi.org/10.1111/j.1365-2427.2004.01293.x.

    Article  Google Scholar 

  • Kimmel, B. L., Lind, O. T., & Paulson, L. J. (1990). Reservoir primary production. In K. W. Thornton, B. L. Kimmel, & F. E. Payne (Eds.), Reservoir limnology: Ecological perspectives (pp. 133–194). New York: J. Wiley & Sons.

    Google Scholar 

  • Kubecka, J., Matena, J., & Hartvich, P. (1997). Adverse ecological effects of small hydropower stations in the Czech Republic: 1. Bypass plants. Regulated Rivers: Research & Management, 13(2), 101–113. https://doi.org/10.1002/(SICI)1099-1646(199703)13:2<101::AID-RRR439>3.0.CO;2-U.

    Article  Google Scholar 

  • Luz-Agostinho, K. D. G., Latini, J. D., Abujanra, F., Gomes, L. C., & Agostinho, A. A. (2010). A ictiofauna do rio das Antas: distribuição e bionomia das espécies (115 pp). Maringá: Clichetec.

    Google Scholar 

  • MacArthur, R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42(3), 594–598. https://doi.org/10.2307/1932254.

    Article  Google Scholar 

  • McDonough, T. A., & Hickman, G. D. (1999). Reservoir Fish Assemblage Index development: A tool for assessing ecological health in Tennessee Valley authority impoundments. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities (pp. 523–540). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Novotny, V., Bartosová, A., O’Reilly, N., & Ehlinger, T. (2005). Unlocking the relationshipof biotic integrity of impaired waters to anthropogenic stress. Water Research, 39(1), 184–198. https://doi.org/10.1016/j.watres.2004.09.002.

    Article  CAS  Google Scholar 

  • Oliveira, C., Avelino, G. S., Abe, K. T., Mariguela, T. C., Benine, R. C., Ortí, G., Vari, R. P., & Corrêa e Castro, R. M. (2011). Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BioMed Central Evolutionary Biology, 11, 275. https://doi.org/10.1186/1471-2148-11-275.

    Article  Google Scholar 

  • Oliveira, A. G., Baumgartner, M. T., Gomes, L. C., Dias, R. M., & Agostinho, A. A. (2018). Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, 63(3), 293–305. https://doi.org/10.1111/fwb.13064.

    Article  CAS  Google Scholar 

  • Paller, M. H. (2002). Temporal variability in fish assemblages from disturbed and undisturbed streams. Journal of Aquatic Ecosystems Stress and Recovery, 9, 149–158. https://doi.org/10.1023/A:1021251909754.

    Article  Google Scholar 

  • Pelicice, F. M., Abujanra, F., Fugi, R., Latini, J. D., Gomes, L. C., & Agostinho, A. A. (2005). A piscivoria controlando a produtividade em reservatórios: explorando o mecanismo top down. In L. Rodrigues, S. M. Thomaz, A. A. Agostinho, & L. C. Gomes (Eds.), Biocenoses em reservatórios: padrões espaciais e temporais (pp. 293–302). São Carlos: Rima.

    Google Scholar 

  • Pelicice, F. M., Pompeu, P. S., & Agostinho, A. A. (2014). Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. Fish and Fisheries, 16(4), 697–715. https://doi.org/10.1111/faf.12089.

    Article  Google Scholar 

  • Petesse, M. L., Petrere Jr., M., & Spigolon, R. J. (2007). Adaptation of the Reservoir Fish Assemblage Index (RFAI) for assessing the Barra Bonita reservoir (São Paulo, Brazil). River Research and Applications, 23(6), 595–612. https://doi.org/10.1002/rra.1001.

    Article  Google Scholar 

  • Petesse, M. L., Petrere Jr., M., & Agostinho, A. A. (2014). Defining a fish bio-assessment tool to monitoring the biologicalcondition of a cascade reservoirs system in tropical area. Ecological Engineering, 69, 139–150. https://doi.org/10.1016/j.ecoleng.2014.03.070.

    Article  Google Scholar 

  • Piana, P. A., Gomes, L. C., & Agostinho, A. A. (2006). Comparison of predator–prey interaction models for fish assemblages from the neotropical region. Ecological Modelling, 192(1–2), 259–270. https://doi.org/10.1016/j.ecolmodel.2005.07.002.

    Article  Google Scholar 

  • Roset, N., Grenouillet, G., Goffaux, G. D., Pont, D., & Kestemont, P. (2007). A review of existing fish assemblage indicators and methodologies. Fisheries Management and Ecology, 14, 393–405. https://doi.org/10.1111/j.1365-2400.2007.00589.x.

    Article  Google Scholar 

  • Ruaro, R., & Gubiani, É. A. (2013). A scientometric assessment of 30 years of the index of biotic integrity in aquatic ecosystems: Applications and main flaws. Ecological Indicators, 29, 105–110. https://doi.org/10.1016/j.ecolind.2012.12.016.

    Article  Google Scholar 

  • Santos, N. C. L., Santana, H. S., Ortega, J. C. G., Dias, R. M., Stegmann, L. F., Araújo, I. M. S., et al. (2017). Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, 802, 245–253. https://doi.org/10.1007/s10750-017-3274-4.

    Article  Google Scholar 

  • Singh, G., & Agarwal, N. K. (2017). Impact of hydropower project (RoR) on the ichthyofaunal diversity of river Birahiganga in Central Himalaya (India). Journal of Fisheries, 5(2), 507–512. https://doi.org/10.17017/jfish.v5i2.2017.192.

    Article  Google Scholar 

  • STATSOFT Inc. (2007). Statistica (data analysis software system). version 7. Retrieved from http://www.statsoft.com.

  • Terra, B. F., & Araújo, F. G. (2011). A preliminary fish assemblage index for a transitional river–reservoir system in southeastern Brazil. Ecological Indicators, 11(3), 874–881. https://doi.org/10.1016/j.ecolind.2010.11.006.

    Article  Google Scholar 

  • Ticiani, D., Bogoni, R. F., Eichelberger, A. C. A., Berlatto, A. F., Medeiros, G., & Delariva, R. L. (2018). Trends in the application of multimetric indexes in Brazil: Scienciometric analyses related to fish fauna. Ciência e Natura, 40, e18. https://doi.org/10.5902/2179460X28291.

    Article  Google Scholar 

  • Vitule, J. R. S., Freire, C. A., & Simberloff, D. (2009). Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries, 10, 98–108. https://doi.org/10.1111/j.1467-2979.2008.00312.x.

    Article  Google Scholar 

  • Ward, J. V., & Stanford, J. A. (1983). The serial discontinuity concept of lotic ecosystems. In T. D. Fontaine & S. M. Bartell (Eds.), Dynamics of lotic ecosystems (pp. 29–42). Michigan: Ann Arbor Scientific Publishers.

    Google Scholar 

  • Whittier, T. R., Hughes, R. M., Stoddard, J. L., Lomnicky, G. A., Peck, D. V., & Herlihy, A. T. (2007). A structured approach for developing indices of biotic integrity: Three examples from streams and rivers in the Western USA. Transactions of the American Society, 136(3), 718–735. https://doi.org/10.1577/T06-128.1.

    Article  Google Scholar 

  • Winemiller, K. O. (1989). Patterns of variation in life history among South American fishes in seasonal environments. Oecologia, 81(2), 225–241. https://doi.org/10.1007/BF00379810.

    Article  Google Scholar 

Download references

Acknowledgments

The technical support and data collection is due to Aquática Consultoria e Assessoria Ltda., especially Luis F. Beux (in memoriam) and Fernanda F. Brol. We thank Gabriela Medeiros and Jascieli C. Bortolini, for the graphic contributions and Débora R. de Carvalho for the suggestions on adapting the multimetric index.

Funding

This work had the incentive and support of Companhia Energética Rio das Antas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Ticiani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 53 kb)

ESM 2

(DOCX 31 kb)

ESM 3

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ticiani, D., Delariva, R.L. The biotic condition of dams run-of-the-river in sequence: adaptation of a multimetric index based on the Neotropical fish fauna. Environ Monit Assess 192, 398 (2020). https://doi.org/10.1007/s10661-020-08367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08367-2

Keywords

Navigation