Skip to main content
Log in

Development of nanocrystalline multilayer Ni–Fe alloy coatings: characterization and its corrosion behaviour at elevated temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The present work deals with the galvanostatic fabrication of Ni–Fe nanostructured composition-modulated multilayer alloy (CMMA) coatings on steel panel from the newly optimized acid-sulphate bath solution. The recurring cathode current density combination (RCCC) and the number of layers have been optimized for enhanced performance of the coatings against corrosion. Corrosion behaviour of the nanostructured multilayered coatings was evaluated by Tafel extrapolation and electrochemical impedance spectroscopy (EIS) methods in 3.5% NaCl solution. Under optimal conditions, the CMMA coatings developed were more corrosion-resistant than the monolithic alloy coatings obtained from the same bath. Least corrosion rate (CR) was witnessed at 300 layers, above which saturation of corrosion resistance at a high temperature was found, which is attributed to a shorter relaxation time for redistribution of metal ions during multilayer deposition. Hardness and roughness of the coatings were evaluated using Vickers hardness test and atomic force microscope, respectively. Phase structure of the coatings was discussed using X-ray diffraction technique. The cross-sectional view of the coatings was characterized by scanning electron microscope. CR analysis and the surface morphology of the optimized coatings exposed to high temperature revealed the better performance of CMMA coatings at the elevated temperatures compared to the monolithic coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Pavithra G P and Chitharanjan Hegde A 2012 Appl. Surf. Sci. 258 6884

    Article  CAS  Google Scholar 

  2. Rashmi D, Pavithra G P and Praveen B M 2019 IJAEML 3 10

    Google Scholar 

  3. Dahms H and Croll I M 1965 J. Electrochem. Soc. 112 771

    Article  CAS  Google Scholar 

  4. Till Krause, Lazar Arulnayagam and Mark Pritzkert 1997 J. Electrochem. Soc.144 960

    Article  CAS  Google Scholar 

  5. Hongqi Li and Fereshteh Ebrahimi 2003 Acta Mater. 51 3905

    Article  Google Scholar 

  6. Rahsepar M and Bahrololoom M E 2009 Corros. Sci.51 2537

    Article  CAS  Google Scholar 

  7. Barmak K, Michaelsen C and Lucadamo G 1997 J. Mater. Res. 12 133

    Article  CAS  Google Scholar 

  8. Jing-Yin Fei and Wilcox G D 2006 Surf. Coat. Tech. 200 3533

    Article  Google Scholar 

  9. Jiang S X and Guo R H 2011 Surf. Coat. Tech.205 4274

    Article  CAS  Google Scholar 

  10. Changdong Gua, Jianshe Liana, Guangyu Lia, Liyuan Niua and Zhonghao Jianga 2005 Surf. Coat. Tech.197 61

    Article  Google Scholar 

  11. Ivanov I, Valkova T and Kirilova I 2002 J. Appl. Electrochem. 32 85

    Article  CAS  Google Scholar 

  12. Haseeb A S M A,  Celis J P and  Roos J R 1994 J. Electrochem. Soc. 141 230

    Article  CAS  Google Scholar 

  13. Behrouz Bahadormanesh, Mohammad Ghorbani and Naser Lotfi Kordkolaei 2017 Appl. Surf. Sci. 404 101

    Article  CAS  Google Scholar 

  14. Mohan Reddy R, Praveen B M, Praveen Kumar C M and Venkatesha T V 2015 J. Mater. Eng. Perform.24 1987

    Article  CAS  Google Scholar 

  15. Mohan Reddy R, Praveen B M and Praveen Kumar C M 2017 Surf. Eng. Appl. Elect.53 179

    Article  Google Scholar 

  16. Roy S, Schmuki P and Virtanen S (eds) 2009 Electrochemistry at the nanoscale (New York: Springer) p 349

  17. Leisner P, Nielsen C B, Tang P T, Dorge T C and Moller P 1996 J. Mater. Process.38 39

    Article  Google Scholar 

  18. Bahrololoom M E, Gabe D R and Wilcox G D 2004 Trans. Inst. Met. Fin.82 51

    Article  CAS  Google Scholar 

  19. Yathish Ullal and Chitharanjan Hegde A 2014 Appl. Phys. A: Mater.116 1587

    Article  Google Scholar 

  20. Shetty A R and Chitharanjan Hegde A 2017 Surf. Coat. Tech.322 99

    Article  CAS  Google Scholar 

  21. Venkatakrishna K and Chitharanjan Hegde A 2010 J. Appl. Electrochem.40 2051

    Article  CAS  Google Scholar 

  22. Yogesha S and Chitharanjan Hegde A 2011 J. Mater. Process. Technol.211 1409

    Article  CAS  Google Scholar 

  23. Udompanit N, Wangyao P, Henpraserttae S and Boonyongmaneerat Y 2014 Adv. Mater. Res. 302 1025

    Google Scholar 

  24. Elias L, Bhat K U and Hegde A C 2016 RSC Adv. 6 34005

    Article  CAS  Google Scholar 

  25. Pavithra G P and Chitharanjan Hegde A 2013 Surf. Eng. Appl. Elect.49 261

    Article  Google Scholar 

  26. Gavrila M, Millet J P, Mazille H, Marchandise D and Cuntz J M 2000 Surf. Coat. Tech.123 164

    Article  CAS  Google Scholar 

  27. Bahadormanesh B and Dolati A 2010 J. Alloys Compd.504 514

    Article  CAS  Google Scholar 

  28. Hiroaki Nakano, Masayuki Matsuno, Satoshi Oue, Masaaki Yano, Shigeo Kobayashi and Hisaaki Fukushima 2004 Mater. Trans. JIM45 3130

    Article  CAS  Google Scholar 

  29. Elkhatabi F, Benballa M, Sarret M and Mueller C 1999 Electrochim. Acta44 1645

    Article  CAS  Google Scholar 

  30. Behrouz Bahadormanesh and Mohammad Ghorbani 2018 Appl. Surf. Sci.442 275

    Article  Google Scholar 

  31. Maciej A, Nawrat G, Simka W and Piotrowski J 2012 Mater. Chem. Phys.132 1095

    Article  CAS  Google Scholar 

  32. Bhat R S and Hegde A C 2011 Surf. Eng. Appl. Elect. 47 112

    Article  Google Scholar 

  33. Kima S-H, Sohna H-J, Jooa Y-C, Kima Y-W, Yimb T-H, Leeb H-Y et al 2005 Surf. Coat. Tech.199 43

    Article  Google Scholar 

  34. El-Sherik A M and Erb U 1995 J. Mater. Sci.30 5743

    Article  CAS  Google Scholar 

  35. Yathish Ullal and Chitharanjan Hegde A 2014 Appl. Phys. A116 1587

    Article  CAS  Google Scholar 

  36. Wenchao Wang and Raj N Singh 1999 Mater. Sci. Eng. A271 306

    Article  Google Scholar 

  37. Yogesha S and Hegde A C 2011 J. Met. Mater. Miner. 21 83

    CAS  Google Scholar 

  38. Zhefeng Lei, Qingqing Zhang, Xiaodong Zhu, Dayan Ma, Fei Ma, Zhongxiao Song et al 2018 Appl. Surf. Sci.431 170

    Article  CAS  Google Scholar 

  39. Dobrzanski L A, Lukaszkowicz K, Paku D and Miku J 2007 Arch. Mater. Sci. Eng. 28 12

    Google Scholar 

  40. Kalantary M R, Wilcox G D and Gabe D R 1995 Electrochim. Acta40 1609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank ISRO-RESPOND (Project No. ISRO/RES/3/723/16-17, dated 03-02-2017), Govt. of India, for sanctioning the project and providing instrumental and financial facilities. We are also grateful to the authorities of Srinivas School of Engineering, Mukka, Mangalore, Karnataka, for providing laboratory facilities and constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P Pavithra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashmi, D., Pavithra, G.P., Praveen, B.M. et al. Development of nanocrystalline multilayer Ni–Fe alloy coatings: characterization and its corrosion behaviour at elevated temperature. Bull Mater Sci 43, 131 (2020). https://doi.org/10.1007/s12034-020-02087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02087-6

Keywords

Navigation