Skip to main content
Log in

Automated Ritz Method for Large Deflection of Plates with Mixed Boundary Conditions

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an automated Ritz method is developed for the analysis of thin rectangular plates undergoing large deflection. The trial functions approximating the plate lateral and in-plane displacements are represented by simple polynomials. The nonlinear algebraic equations resulting from the application of the concept of minimum potential energy of the plate are cast in a matrix form. The developed matrix form equations are then implemented in a Mathematica code that allows the automation of the solution for an arbitrary number of the trial polynomials. The developed code is tested through several numerical examples involving rectangular plates with different aspect ratios and boundary conditions. The results of all examples demonstrate the efficiency and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. von Karman, T.: Festigkeitsprobleme im Maschinenbau. Encycl. der math. Wiss. 4, 348–351 (1910)

    MATH  Google Scholar 

  2. Ventsel, E.; Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. CRC Press, Boca Raton (2001)

    Book  Google Scholar 

  3. Timoshenko, S.; Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  4. Ugural, A.C.: Stresses in Beams, Plates, and Shells. CRC Press, Boca Raton (2009)

    Google Scholar 

  5. Szilard, R.: Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods. Wiley, New York (2004)

    Book  Google Scholar 

  6. Lee, J.: Comparison of the two formulations of w-u-v and w-F in nonlinear plate analysis. J. Appl. Mech. 69, 547–552 (2002)

    Article  Google Scholar 

  7. Levy, S.: Bending of rectangular plates with large deflections. Natl. Bur. Stand. Gaithersbg, MD (1942)

    MATH  Google Scholar 

  8. Yamaki, N.: Influence of large amplitudes on flexural bibrations of elastic plates. ZAMM Zeitschrift für Angew. Math. und Mech. 41, 501–510 (1961)

    Article  MathSciNet  Google Scholar 

  9. Iyengar, K.T.S.R.; Naqvi, M.M.: Large deflections of rectangular plates. Int. J. Non Linear Mech. 1, 109–122 (1966)

    Article  Google Scholar 

  10. Boresi, A.P.; Turner, J.P.: Large deflections of rectangular plates. Int. J. Non Linear Mech. 18, 125–131 (1983)

    Article  Google Scholar 

  11. Hooke, R.: Approximate analysis of the large deflection elastic behaviour of clamped, uniformly loaded, rectangular plates. J. Mech. Eng. Sci. 11, 256–268 (1969)

    Article  Google Scholar 

  12. Li-zhou, P.; Shu, W.: A perturbation-variational solution of the large deflection of rectangular plates under uniform load. Appl. Math. Mech. 7, 727–740 (1986)

    Article  Google Scholar 

  13. Wang, D.; El-Sheikh, A.I.: Large-deflection mathematical analysis of rectangular plates. J. Eng. Mech. 131, 809–821 (2005)

    Article  Google Scholar 

  14. Okodi, A.; Ziraba, Y.N.; Mwakali, A.J.: Exact large deflection analysis of thin rectangular plates under distributed lateral line load. In: Second International Conference on Advances in Engineering and Technology Approximate, vol. 137, pp. 422–430 (2005)

  15. Bakker, M.C.M.; Rosmanit, M.; Hofmeyer, H.: Approximate large-deflection analysis of simply supported rectangular plates under transverse loading using plate post-buckling solutions. Thin-Walled Struct. 46, 1224–1235 (2008)

    Article  Google Scholar 

  16. Razdolsky, A.G.: Large deflections of elastic rectangular plates. Int. J. Comput. Methods Eng. Sci. Mech. 16, 354–361 (2015)

    Article  MathSciNet  Google Scholar 

  17. Das, D.; Sahoo, P.; Saha, K.: Large deflection analysis of skew plates under uniformly distributed load for mixed boundary conditions. Int. J. Eng. Sci. Technol. 2, 100–112 (2010)

    Article  Google Scholar 

  18. Dai, H.; Yue, X.; Atluri, S.: Solutions of the von Kármán plate equations by a Galerkin method, without inverting the tangent stiffness matrix. J. Mech. Mater. Struct. 9, 195–226 (2014)

    Article  Google Scholar 

  19. Zhang, L.; Wang, J.; Zhou, Y.-H.: Wavelet solution for large deflection bending problems of thin rectangular plates. Arch. Appl. Mech. 85, 355–365 (2014)

    Article  Google Scholar 

  20. Wang, X.; Liu, X.; Wang, J.; Zhou, Y.: A wavelet method for bending of circular plate with large deflection. Acta Mech. Solida Sin. 28, 83–90 (2015)

    Article  Google Scholar 

  21. Yu, Q.; Xu, H.; Liao, S.: Coiflets solutions for Föppl–von Kármán equations governing large deflection of a thin flat plate by a novel wavelet-homotopy approach. Numer. Algorithms 79, 993–1020 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kawai, T.; Yoshimura, N.: Analysis of large deflection of plates by the finite element method. Int. J. Numer. Methods Eng. 1, 123–133 (1969)

    Article  Google Scholar 

  23. Xu-ming, S.; Zu-wu, Z.: Large deflection analysis of rectangular plates by combined perturbation and finite strip method. Appl. Math. Mech. 12, 55–59 (1991)

    Article  Google Scholar 

  24. Nerantzaki, M.S.; Katsikadelis, J.T.: A Green’s function method for large deflection analysis of plates. Acta Mech. 75, 211–225 (1988)

    Article  Google Scholar 

  25. Sladek, J.; Sladek, V.: A meshless method for large deflection of plates. Comput. Mech. 30, 155–163 (2003)

    Article  Google Scholar 

  26. Bitaraf, M.; Mohammadi, S.: Large deflection analysis of flexible plates by the meshless finite point method. Thin-Walled Struct. 48, 200–214 (2010)

    Article  Google Scholar 

  27. Hussein Al-Tholaia, M.M.; Al-Gahtani, H.J.: RBF-based meshless method for large deflection of elastic thin rectangular plates with boundary conditions involving free edges. Math. Probl. Eng. 2016, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  28. Demir, Ç.; Civalek, Ö.: A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Compos. Struct. 168, 872–884 (2017)

    Article  Google Scholar 

  29. Eren, I.: Analyses of large deflections of simply supported nonlinear beams, for various arc length functions. Arab. J. Sci. Eng. 38, 947–952 (2013)

    Article  Google Scholar 

  30. Civalek, Ö.; Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessels Pip. 84, 527–535 (2007)

    Article  Google Scholar 

  31. Civalek, Ö.: Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl. Math. Model. 33, 3825–3835 (2009)

    Article  MathSciNet  Google Scholar 

  32. Seguini, M.; Nedjar, D.: Nonlinear analysis of deep beam resting on linear and nonlinear random soil. Arab. J. Sci. Eng. 42, 3875–3893 (2017)

    Article  MathSciNet  Google Scholar 

  33. Langhaar, H.L.: Energy Methods in Applied Mechanics. Dover Publications, New York (2016)

    Google Scholar 

  34. Wolfram Research. Mathematica. Version 11 (2018)

  35. Rohatgi, A.: WebPlotDigitizer. https://automeris.io/WebPlotDigitiz (2019). Accessed 29 Mar 2019

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by King Fahd University of Petroleum &Minerals (KFUPM) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madyan A. Al-Shugaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shugaa, M.A., Al-Gahtani, H.J. & Musa, A.E.S. Automated Ritz Method for Large Deflection of Plates with Mixed Boundary Conditions. Arab J Sci Eng 45, 8159–8170 (2020). https://doi.org/10.1007/s13369-020-04642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04642-z

Keywords

Navigation