Skip to main content

Advertisement

Log in

Accumulation of Potentially Toxic Elements in Invasive Ambrosia artemisiifolia on Sites with Different Levels of Anthropogenic Pollution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated invasive Ambrosia artemisiifolia from five localities with different levels of anthropogenic pollution in order to determine the potential for accumulation of trace metals and metaloids. Physical characteristics of the soil are presented, together with concentrations of As, B, Ba, Ca, Cd, Co, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Sr, and Zn in both plant and soil. The tested samples displayed considerable differences in element concentrations, depending on the level of anthropogenic activities, with the highest concentrations of elements observed in samples from Stolice and Piskanja, the sites with most intensive human influence. A trend of shoot accumulation can be observed in A. artemisiifolia, but without hyperaccumulation, along with lower root concentrations in almost all analyzed samples. This may pose an additional environmental risk, as accumulated elements can spread to other components of the ecosystem. While A. artemisiifolia acumulates a high and even toxic rate of B in shoots regardless of boron concentration in soil, there is a high correlation of Ba, Pb, and Zn concentrations in species shoots with their respective concentration in the soil. Successful colonization of both natural and anthropogenically polluted habitats indicates high tolerance of A. artemisiifolia, which complements its wide environmental amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addinsoft (2020). XLSTAT statistical and data analysis solution. New York, USA. https://www.xlstat.com.

  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. Alloway (Ed.), Heavy metals in soils (pp. 11–50). Dordrecht: Springer.

    Google Scholar 

  • Andrić, N., Fügenschuh, B., Životić, D., & Cvetković, V. (2015). The thermal history of the Miocene Ibar Basin (southern Serbia): new constraints from apatite and zircon fission track and vitrinite reflectance data. Geologica Carpathica, 66(1), 37–50.

    Google Scholar 

  • Angin, I., Turan, M., Ketterings, Q. M., & Cakici, A. (2008). Humic acid addition enhance B and Pb phytoextraction by vetiver grass (Vetiveria zizanoides (L.) Mash). Water, Air, and Soil Pollution, 188, 335–343.

    CAS  Google Scholar 

  • Bani, A., Pavlova, D., Echevarria, G., Mullaj, A., Reeves, R. D., Morel, J. L., & Sulçe, S. (2010). Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Botanica Serbica, 34(1), 3–14.

    Google Scholar 

  • Bettarini, I., Colzi, I., Coppi, A., Falsini, S., Echevarria, G., Pazzagli, L., Selvi, F., & Gonnelli, C. (2019). Unravelling soil and plant metal relationships in Albanian nickel hyperaccumulators in the genus Odontarrhena (syn. Alyssum sect. Odontarrhena, Brassicaceae). Plant and Soil, 440(1–2), 135–149.

    CAS  Google Scholar 

  • Božić, D. (2018). Ambrosia artemisiifolia L. – ambrozija pelenasta. Acta Herbologica, 27(2), 79–97.

    Google Scholar 

  • Casado, M., Anawar, H. M., Garcia-Sanchez, A., & Santa Regina, I. (2007). Antimony and arsenic uptake by plants in an abandoned mining area. Communications in Soil Science and Plant Analysis, 38(9–10), 1255–1275.

    CAS  Google Scholar 

  • Cloutier-Hurteau, B., Gauthier, S., Turmel, M., Comtois, P., & Courchesne, F. (2014). Trace elements in the pollen of Ambrosia artemisiifolia: What is the effect of soil concentrations? Chemosphere, 95, 541–549.

    Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena–La Unión mining district (SE Spain). Science of the Total Environment, 366(1), 1–11.

    CAS  Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2007). Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union 820 Mining District (SE Spain). Chemosphere, 66(1), 8–44.

    Google Scholar 

  • Čudić, V., Stojiljković, D., & Jovovic, A. (2016). Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Arhiv za Higijenu Rada i Toksikologiju, 67(3), 229–239.

    Google Scholar 

  • Đorđević, D., Stanković, M., Krstić, N., Dimitrijević, V., Anastasijević, N., Đorđević, M., & Nikolić, M. (2018). Geochemical analysis of Kostolac power plant fly ash: working and living environment influence aspect. Safety Engineering, 18(1), 15–20.

    Google Scholar 

  • Đuričković, A. (1982). Metallogeny of the Brasina mining field, Zajača, Stolice, Dobri Potok. Bulletin of Institute for Geological and Geophysical Research, 40, 17–53.

    Google Scholar 

  • Filipović, I., Pavlović, Z., Marković, B., Radin, V., Marković, O., Gagić, N., Atin, B., & Milićević, M. (1967-1971). Geological map sheet Gornji Milanovac 1:100 000. Belgrade: Geologic map of Yugoslavia. Federal Geological Institute.

  • Fumanal, B., Girod, C., Fried, G., Bretagnolle, F., & Chauvel, B. (2008). Can the large ecological amplitude of Ambrosia artemisiifolia explain its invasive success in France? Weed Research, 48(4), 349–359.

    Google Scholar 

  • Gajić, G., Mitrović, M., & Pavlović, P. (2019). Ecorestoration of fly ash deposits by native plant species at thermal power stations in Serbia. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of Polluted Sites (pp. 113–177). Amsterdam: Elsevier.

    Google Scholar 

  • Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9(3), 303–321.

    CAS  Google Scholar 

  • Geologic map of Yugoslavia (1970). Geological map sheet Vrnjci 1:100 000. Federal Geological Institute, Belgrade.

  • Ghaderian, S. M., & Baker, A. J. M. (2007). Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. Journal of Geochemical Exploration, 92(1), 34–42.

  • Global Invasive Species Database (2020). Species profile: Ambrosia artemisiifolia. http://www.iucngisd.org/gisd/species.php?sc=1125. Accessed 17 Jan 2020.

  • Hammel, W., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41(11), 1791–1798.

  • Hassan, Z., & Aarts, M. G. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany, 72(1), 53–63.

    CAS  Google Scholar 

  • Hijmans, R.J. Guarino, L., & Mathur, P. (2012). DIVA-GIS version 7.5. http://www.diva-gis.org/ accessed 20 December 2019.

  • Huang, J., & Cunningham, S. (1996). Lead phytoextraction: species variation in lead uptake and translocation. New Phytologist, 134, 75–84.

    CAS  Google Scholar 

  • ISO 11466 (1995). International Standard. Soil quality – extraction of trace elements soluble in aqua regia. Geneva: International Organization for Standardization.

  • ISO 3166/2. (1998). Codes for the representation of names of countries and their subdivisions–part 2: Country subdivision code. Geneva: International Organization for Standardization.

    Google Scholar 

  • Ivković, M. (2012). Sistematizacija prirodno-geoloških uslova eksplaoatacije uglja u podzemnim rudnicima u Srbiji. Resavica: Komitet za podzemnu eksploataciju.

    Google Scholar 

  • Jakovljević, K., Đurović, S., Antušević, M., Mihailović, N., Buzurović, U., & Tomović, G. (2019). Heavy metal tolerance of Pontechium maculatum (Boraginaceae) from several ultramafic localities in Serbia. Botanica Serbica, 43(1), 73–83.

    Google Scholar 

  • Jakovljević, K., Mišljenović, T., Savović, J., Ranković, D., Ranđelović, D., Mihailović, N., & Jovanović, S. (2020). Accumulation of trace elements in Tussilago farfara colonizing post-flotation tailing sites in Serbia. Environmental Science and Pollution Research, 27, 4089–4103.

    Google Scholar 

  • Jim, C. Y., (1998). Urban soil characteristics and limitations for landscape planting in Hong Kong. Landscape and Urban Planning, 40(4), 235–249.

  • Jose, S., Pal Singh, H., Batis, D., & Kumar Kohli, R. (2013). Invasive plant ecology. Boca Raton: CRC Press.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Karanović, L., Rosić, A., & Poleti, D. (2004). Crystal structure of nobleite, Ca [B6O9 (OH) 2]˙ 3H2O, from Jarandol (Serbia). European Journal of Mineralogy, 16(5), 824–832.

    Google Scholar 

  • Kazakou, E., Dimitrakopoulos, P. G., Baker, A. J. M., Reeves, R. D., & Troumbis, A. Y. (2008). Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biological Reviews, 83(4), 495–508.

    CAS  Google Scholar 

  • Kazinczi, G., Béres, I., Novák, R., Bíró, K., & Pathy, Z. (2008). Common ragweed (Ambrosia artemisiifolia): a review with special regards to the results in Hungary. I. Taxonomy, origin and distribution, morphology, life cycle and reproduction strategy. Herbologia, 9(1), 55–91.

    Google Scholar 

  • Kostić, N. M., Wilson, M. J., Jakovljević, M. D., & Stevanović, D. (1996). Chemical and mineralogical studies of some Yugoslav deposols in relation to their possible agricultural use. Journal of Environmental Science & Health Part A, 31(7), 1575–1594.

    Google Scholar 

  • Lemke, D., Schweitzer, C. J., Tazisong, I. A., Wang, Y., & Brown, J. A. (2013). Invasion of a mined landscape: what habitat characteristics are influencing the occurrence of invasive plants? International Journal of Mining. Reclamation and Environment, 27(4), 275–293.

    Google Scholar 

  • Makra, L., Matyasovszky, I., & Deák, Á. J. (2014). Ragweed in Eastern Europe. In L. H. Ziska & J. S. Dukes (Eds.), Invasive species and global climate change (pp. 117–128). Boston: CAB International, Wallingford.

    Google Scholar 

  • Makra, L., Matyasovszky, I., Hufnagel, L., & Tusnády, G. (2015). The history of ragweed in the world. Applied Ecology and Environmental Research, 13(2), 489–512.

    Google Scholar 

  • Mandzhieva, S., Minkina, T., Chaplygin, V., Chaplygin, V., Motuzova, G., Sushkova, S., Bauer, T., & Nevidomskaya, D. (2016). Plant contamination by heavy metals in the impact zone of Novocherkassk Power Station in the south of Russia. Journal of Soils and Sediments, 16, 1383.

    CAS  Google Scholar 

  • Markert, B. (1993). Occurrence and distribution of chemical elements in plants - outlook and further research plans. Toxicological & Environmental Chemistry, 40(1–4), 31–41.

    CAS  Google Scholar 

  • Minkina, T., Mandzhieva, S., Chaplygin, V., Motuzova, G., Burachevskaya, M., Bauer, T., Sushkova, S., & Nevidomskaya, D. (2017). Eurasian Soil Science, 50(6), 746–755.

    CAS  Google Scholar 

  • Montagnani, C., Gentili ,R., Smith, M., Guarino, M., & Citterio, S. (2017). The worldwide spread, success and impact of ragweed (Ambrosia spp.). Critical Reviews in Plant Sciences, 36(3), 139–178.

  • Mudrinić, Č. (1975). Primary dispersion aureoles of the antimony deposit Stolice (Western Serbia). Transactions of the Faculty of Mining and Geology, University of Belgrade, 18, 57–66.

    Google Scholar 

  • Mudrinić, Č. (1978). Geohemijske karakteristike Sb-As asocijacije u Srpsko-Makedonskoj provinciji. Dissertation, University of Belgrade.

  • Nable, R. O., Bañuelos, G. S., & Paull, J. G. (1997). Boron toxicity. Plant and Soil, 193(1–2), 181–198.

    CAS  Google Scholar 

  • Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A. H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Sciences, 59(2), 315–323.

    CAS  Google Scholar 

  • Official Gazette RS 39/2016. Regulation on the establishment of the State pollution remediation program for the Kostajnička, Korenita and Jadar River due to discharge of the flotation tailing spill from the antimony mine “Stolice” [in Serbian].

  • Olujić, J., & Karović, J. (1970–1980). Geological map sheet Višegrad 1:100 000. Geologic map of Yugoslavia. Belgrade: Federal Geological Institute.

  • Ozturk, M., Sakcali, S., Gucel, S., & Tombuloglu, H. (2010). Boron and plants. In M. Ashraf, M. Ozturk, & M. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 275–311). Dordrecht: Springer.

    Google Scholar 

  • Panaullah, G. M., Alam, T., Hossain, M. B., Loeppert, R. H., Lauren, J. G., Meisner, C. A., Ahmed, Z. U., & Duxbury, J. M. (2009). Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil, 317(1–2), 31.

    CAS  Google Scholar 

  • Pequerul, A., Pérez, C., Madero, P., Val, J., & Monge, E. (1993). A rapid wet digestion method for plant analysis. In M.A.C. Fragoso, M.L. Van Beusichem, & A. Houwers (Eds.), Optimization of plant nutrition, Developments in plant and soil sciences, vol 53 (pp. 3–6). Dordrecht: Springer.

  • Pichtel, J., Kuroiwa, K., & Sawyerr, H. (2000). Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environmental Pollution, 110, 171–178.

    CAS  Google Scholar 

  • Pinke, G., Karácsony, P., Czúcz, B., & Botta-Dukát, Z. (2011). Environmental and land-use variables determining the abundance of Ambrosia artemisiifolia in arable fields in Hungary. Preslia, 83, 219–235.

    Google Scholar 

  • Porter, E. K., & Peterson, P. J. (1975). Arsenic accumulation by plants on mine waste (United Kingdom). Science of the Total Environment, 4(4), 365–371.

    CAS  Google Scholar 

  • Proctor, J. (1999). Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology & Evolution, 14(9), 334–335.

  • R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed 25 December 2019.

  • Ranđelović, D., Mutić, J., Marjanović, P., Đorđević, T., & Kašanin-Grubin, M. (2019). Geochemical distribution of selected elements in flotation tailings and soils/sediments from the dam spill at the abandoned antimony mine Stolice, Serbia. Environmental Science and Pollution Research, 1–16. https://doi.org/10.1007/s11356-019-07348-4.

  • Rat, M., Simonović, P., Glavendekić, M., Paunovic, M., Stojanović, V., Karaman, M., Radišić, D., & Anačkov, G. (2016). Overview of the invasive alien species in Serbia. ESENIAS Country Report, 91–114.

  • Sasmaz, M., & Sasmaz, A. (2017). The accumulation of strontium by native plants grown on Gumuskoy mining soils. Journal of Geochemical Exploration, 181, 236–242.

    CAS  Google Scholar 

  • Savić, D., Nišić, D., Malić, N., Dragosavljević, Z., & Medenica, D. (2018). Research on power plant ash impact on the quality of soil in Kostolac and Gacko coal basins. Minerals, 54(2), 1–16.

    Google Scholar 

  • Shacklette, H.T., Erdman, J.A., Harms, T.F., & Papp, C.S. (1978). Trace elements in plant foodstuffs. Toxicity of heavy metals in the environment, Part 1, 25–43.

  • Singh, A., Zeng, D. H., & Chen, F. S. (2005). Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India. Journal of Environmental Sciences, 17, 168–174.

    CAS  Google Scholar 

  • Širka, V. H., Jakovljević, K., Mihailović, N., & Jovanović, S. (2016). Heavy metal accumulation in invasive Reynoutria × bohemica Chrtek & Chrtková in polluted areas. Environmental Earth Sciences, 75(11), 951.

    Google Scholar 

  • Slavnić, Ž. (1953). Prilog flori našeg Podunavlja (pp. 4–6). Zagreb: Glasnik biološke sekcije, Serija II/BT.

    Google Scholar 

  • Soil Science Division Staff. (2017). Soil survey manual. USDA Handbook, 18, 120–131.

    Google Scholar 

  • Tomović, G., Buzurović, U., Đurović, S., Vicić, D., Mihailović, N., & Jakovljević, K. (2018). Strategies of heavy metal uptake by three Armeria species growing on different geological substrates in Serbia. Environmental Science and Pollution Research, 25(1), 507–522.

    Google Scholar 

  • Vaculík, M., Jurkovič, L., Matejkovič, P., Molnárová, M., & Lux, A. (2013). Potential risk of arsenic and antimony accumulation by medicinal plants naturally growing on old mining sites. Water, Air, and Soil Pollution, 224, 1546.

    Google Scholar 

  • Vardaki, C., & Kelepertsis, A. (1999). Environmental impact of heavy metals (Fe, Ni, Cr, Co) in soils waters and plants of Triada in Euboea from ultrabasic rocks and nickeliferous mineralization. Environmental Geochemistry and Health, 21, 211–226.

    CAS  Google Scholar 

  • Vidanović, N., Dimitrijević, B., & Tokalić, R. (2005). Deposits of borate raw materials and their industrial use. Underground Mining Engineering, 14, 157–162.

    Google Scholar 

  • Vidotto, F., Tesio, F., & Ferrero, A. (2013). Allelopathic effects of Ambrosia artemisiifolia L. in the invasive process. Crop Protection, 54, 161–167.

    Google Scholar 

  • Vrbničanin, S., Malidža, G., Stefanović, L., Elezović, I., Stanković-Kalezić, R., Marisavljević, D., Radovanov-Jovanović, K., Pavlović, D., & Gavrić, M. (2008). Distribution of some harmful, invasive and quarantine weeds on the territory of Serbia Part I: spatial distribution and frequency of eight weeds species on the territory of Serbia. Biljni lekar, 36, 303–313.

    Google Scholar 

  • Vukanović Pešić, V., & Rajaković, L. (2014). Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje coal field, Serbia. Energy Sources, Part A: Recovery,Utilization, and Environmental Effects, 31(17), 1583–1589.

    Google Scholar 

  • Wanat, N., Joussein, E., Soubrand, M., & Lenain, J. F. (2014). Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine technosols: a case study of transfer to natural vegetation cover in temperate climates. Environmental Geochemistry and Health, 36, 783–795.

    CAS  Google Scholar 

  • Wei, T., & Simko, V. (2017). R package “corrplot”: visualization of a correlation matrix (version 0.84). https://github.com/taiyun/corrplot accessed 14 January 2020.

  • Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131(3), 393–399.

    CAS  Google Scholar 

  • Yang, R. Y., Tang, J. J., Yang, Y. S., & Chen, X. (2007). Invasive and non-invasive plants differ in response to soil heavy metal lead contamination. Botanical Studies, 48(4), 453–458.

    CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3), 456–464.

    CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

  • Životić, D., Gržetić, I., Simić, V., Popović, V., & Milićević, V. (2008). Potentially hazardous trace elements in coal from the Kostolac coal basin. Tehnika - Rudarstvo, Geologija i Metalurgija, 59(1), 5–12.

    Google Scholar 

  • Životić, D., Cvetković, O., Vulić, P., Gržetić, I., Simić, V., Ilijević, K., Dojčinović, B., Erić, S., Radić, B., Stojadinović, S., & Trifunović, S. (2019). Distribution of major and trace elements in the Kovin lignite (Serbia). Geologia Croatica, 72(1), 51–79.

    Google Scholar 

Download references

Funding

The Ministry of Education, Science and Technological Development of the Republic of Serbia supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Ranđelović.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranđelović, D., Jakovljević, K., Mišljenović, T. et al. Accumulation of Potentially Toxic Elements in Invasive Ambrosia artemisiifolia on Sites with Different Levels of Anthropogenic Pollution. Water Air Soil Pollut 231, 272 (2020). https://doi.org/10.1007/s11270-020-04655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04655-2

Keywords

Navigation