Skip to main content
Log in

Visible-Light Degradation of Organic Dye Based on a Heterostructure Photocatalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Novel highly visible-light active 1.0rGO–ZnBi2O4–Bi2S3 heterostructure photocatalysts with various weight percentages of Bi2S3 were successfully synthesized. First, the 1.0rGO–ZnBi2O4 catalyst was synthesized by a simple two-step oxidation–reduction and co-precipitation methods, followed by heating at 450 °C. Then, 1.0rGO–ZnBi2O4 was hydrothermally treated with Bi3+, and thiourea in ethylene glycol to obtain the 1.0rGO–ZnBi2O4–Bi2S3 heterostructure photocatalyst. The obtained 1.0rGO–ZnBi2O4–Bi2S3 heterostructure photocatalysts were characterized by X-ray diffraction, UV–Vis diffuse reflectance spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Photocatalytic studies were conducted using Indigo carmine and it was found that the heterostructure photocatalyst enabled an almost complete degradation of the pollutants. The enhanced catalytic activity of the 1.0rGO–ZnBi2O4–2.0Bi2S3 heterostructure photocatalyst is due to the homogeneous distribution of ZnBi2O4–2.0Bi2S3 over rGO as well as to the efficient electron-transfer from Bi2S3 to ZnBi2O4 and finally to rGO. More than 97% of Indigo carmine of 50 mg/L was degraded by 1.0rGO–ZnBi2O4–2.0Bi2S3 in 75 min of visible light irradiation. The reusability of the 1.0rGO–ZnBi2O4–2.0Bi2S3 was studied, and after four cycles, the Indigo carmine degradation efficiency decreased to 90%.The mechanism of the Indigo carmine degradation by the 1.0rGO–ZnBi2O4–2.0Bi2S3 catalysis likely consists of to two main processes: first, charge transfer prolongs the lifetime of the electron–hole pairs, and then the electron–hole pairs participate in the reactions that produce free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y (2010) ACS Nano 4:6425

    CAS  Google Scholar 

  2. Yang L, Zhao Z, Wang H, Dong J, Wang L, Zhou Q, Wan X, Zhao R, Cai Z (2019) J Dispersion Sci Technol. https://doi.org/10.1080/01932691.2019.1653768

    Article  Google Scholar 

  3. Kumar P, Vahidzadeh E, Thakur UK, Kar P, Alam KM, Goswami A, Mahdi N, Cui K, Bernard GM, Michaelis VK, Shankar K (2019) J Am Chem Soc 141(13):5415–5436

    CAS  Google Scholar 

  4. Wang S, Li D, Sun C, Yang S, Guan Y, He H (2014) Appl Catal B 144:6596–6599

    Google Scholar 

  5. Naskar M, Roy M, Ghosh S (2015) Phys Chem Chem Phys 17:10160

    Google Scholar 

  6. Li J, Fang W, Yu C, Zhou W, Zhu L, Xie Y (2015) Appl Surf Sci 358:1–1326

    Google Scholar 

  7. Rahman A, Jayaganthan R (2015) J Nanostruct Chem 5:147

    CAS  Google Scholar 

  8. Maruthamani D, Vadivel S, Kumaravel M, Saravanakumar B, Paul B, Dhar SS, Habibi-Yangjeh A, Manikandan A, Ramadoss G (2017) J Colloid Interface Sci 498:449

    CAS  Google Scholar 

  9. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Catal Commun 26:204

    CAS  Google Scholar 

  10. Balachandran S, Swaminathan M (2013) Dalton Trans 42:5338

    CAS  Google Scholar 

  11. Xu W, Fang J, Chen Y, Lu S, Zhou G, Zhu X, Fang Z (2015) Mater Chem Phys 154:30

    CAS  Google Scholar 

  12. Wang D, Zou Z, Ye J (2003) Chem Phys Lett 373:191

    CAS  Google Scholar 

  13. Zhu Z, Li X, Zhao Q, Li H, Shen Y, Chen G (2010) Chem Eng J 165:60

    Google Scholar 

  14. Tang J, Zou Z, Ye J (2004) Angew Chem Int Ed 43:4463

    CAS  Google Scholar 

  15. Cao S-W, Zhu Y-J, Cheng G-F, Huang Y-H (2009) J Hazard Mater 171:431

    CAS  Google Scholar 

  16. Lv W, Liu B, Qiu Q, Wang F, Luo Z, Zhang P, Wei S (2009) J Alloy Compd 479:480

    CAS  Google Scholar 

  17. ThiMaiTho N, TheHuy B, NhaKhanh DN, QuocThang N, ThiPhuongDieu N, DaiDuong B, ThiKimPhuong N (2018) Chem Select 3:9986

    CAS  Google Scholar 

  18. Goswami K, Ananthakrishnan R (2017) New J Chem 41:4406

    CAS  Google Scholar 

  19. Tho NTM, Khanh DNN, Thang NQ, Lee Y-I, Phuong NTK (2020) Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-07752-1

    Article  Google Scholar 

  20. Huy BT, Paeng DS, Thi Bich Thao C, Kim Phuong NT, Lee Y-I (2019) Arab J Chem 13:3790

    Google Scholar 

  21. Tho NTM, Huy BT, Khanh DNN, Ha HNN, Huy VQ, Vy NTT, Huy DM, Dat DP, Phuong NTK (2018) Korean J Chem Eng 35:2442

    CAS  Google Scholar 

  22. Martha S, Padhi DK, Parida K (2014) Chemsuschem 7:58

    Google Scholar 

  23. Pawar RC, Khare V, Lee CS (2014) Dalton Trans 43:12514

    CAS  Google Scholar 

  24. Wang Y, Wang W, Mao H, Lu Y, Lu J, Huang J, Ye Z, Lu B (2014) ACS Appl Mater Interfaces 6:12698

    CAS  Google Scholar 

  25. Wang T, Li C, Ji J, Wei Y, Zhang P, Wang S, Fan X, Long J (2014) ACS Sustain Chem Eng 2:2253

    CAS  Google Scholar 

  26. Darkwah WK, Oswald KA (2019) Nanoscale Res Lett 14:234

    Google Scholar 

  27. Oppong SO-B, Anku WW, Shukla SK, Agorku ES, Govender PP (2016) J Sol-Gel Sci Technol 80:38–49

    CAS  Google Scholar 

  28. Barka N, Assabbane A, Nounah A, Ichou YA (2008) J Hazard Mater 152:120–127

    Google Scholar 

  29. Agorku ES, Kuvarega AT, Mamba BB, Pandey AC, Mishra AK (2015) J Rare Earths 33:498–506

    CAS  Google Scholar 

  30. Palma-Goyes RE, Silva-Agredo J, González I, Torres-Palma RA (2014) Electrochim Acta 140:427

    CAS  Google Scholar 

  31. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    CAS  Google Scholar 

  32. Akhavan O, Ghaderi E (2009) J Phys Chem C 113:20214

    CAS  Google Scholar 

  33. Rivera-Utrilla J, Bautista-Toledo I, Ferro-García MA, Moreno-Castilla C (2001) J Chem Technol Biotechnol 76:21735–21742

    Google Scholar 

  34. Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Carbon 48:4466

    CAS  Google Scholar 

  35. Liu X, Pan L, Lv T, Lu T, Zhu G, Sun Z, Sun C (2011) Catal Sci Technol 1:1189

    CAS  Google Scholar 

  36. Ma J, Fan J, Chen S, Yang X, Hui KN, Zhang H, Bielawski CW, Geng J (2019) ACS Appl Mater Interfaces 11:13234

    CAS  Google Scholar 

  37. Cheng C, Jia P, Xiao L, Geng J (2019) Carbon 145:668

    CAS  Google Scholar 

  38. Akhavan O (2015) Carbon 81:158

    CAS  Google Scholar 

  39. Akhavan O, Ghaderi E, Akhavan A (2012) Biomaterials 33:8017

    CAS  Google Scholar 

  40. Gao M-R, Yu S-H, Yuan J, Zhang W, Antonietti M (2016) Angew Chem Int Ed 55:3921–3931

    Google Scholar 

  41. Luo W, Li F, Li Q, Wang X, Yang W, Zhou L, Mai L (2018) ACS Appl Mater Interfaces 10:7201–7207

    CAS  Google Scholar 

  42. Sakthivel S, Neppolian B, Muthukonda Venkatakrishnan S, Arabindoo B, Palanichamy M, Murugesan V (2003) Solar Energy Mater Solar Cells 77:65–82

    CAS  Google Scholar 

  43. Pourahmad A, Sohrabnezhad S, Kashefian E (2010) Spectrochim Acta Part A 77:1108–1114

    CAS  Google Scholar 

  44. Singh P, Ojha A, Borthakur A, Singh R, Lahiry D, Tiwary D, Mishra PK (2016) Environ Sci Pollut Res 23:22340

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thi Kim Phuong.

Ethics declarations

Conflict of interest

No conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tho, N.T.M., Huy, B.T., Khanh, D.N.N. et al. Visible-Light Degradation of Organic Dye Based on a Heterostructure Photocatalyst. Top Catal 63, 1157–1168 (2020). https://doi.org/10.1007/s11244-020-01280-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01280-5

Keywords

Navigation