Skip to main content
Log in

Influence of Magnetic Field and Bias Voltage on the Thermal Conductivity and Seebeck Coefficient of AA-Stacked Bilayer SiC

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Thermoelectric properties of AA-stacked bilayer SiC in presence of a magnetic field and a bias voltage were studied using the tight binding model. Green function method was applied to calculate thermal conductivity and Seebeck coefficient under the influence of bias voltage and external magnetic field within the linear response theory. We obtained that the effect of bias voltage is to increase energy gap of the bilayer SiC, unlike the magnetic field effect. Thermal conductivity and Seebeck coefficient of bilayer SiC depend on magnetic field and bias voltage. We obtained that the Seebeck coefficient sign is positive, which means the charge carriers are holes, in the whole range of temperature for different values of applied bias voltage and applied magnetic field. Also, the peak appeared in temperature dependence of thermal conductivity, Seebeck coefficient, and figure of merit ZT decreased with bias voltage. Finally, we investigated the effects of applying magnetic field on Seebeck coefficient and thermal conductivity of AA-stacked bilayer SiC in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brar VW, Zhang Y, Yayon Y, Ohta T, McChesney JL, Bostwick A, Rotenberg E, Horn K, Crommie MF (2007) Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl Phys Lett 91:122102

    Article  Google Scholar 

  2. Shahrokhi M (2017) Quasi-particle energies and optical excitations of novel porous graphene phases from first-principles many-body calculations. Diam Relat Mater 77:35–40

    Article  CAS  Google Scholar 

  3. Shahrokhi M (2017) Tuning the band gap and optical spectra of monolayer penta-graphene under in-plane biaxial strains. Optik: 205–214.

  4. Shahrokhi M, Leonard C (2017) Tuning the band gap and optical spectra of silicon-doped graphene: Many-body effects and excitonic states. Alloys Compd 693:1185–1196

    Article  CAS  Google Scholar 

  5. Shahrokhi M (2019) Can fluorine and chlorine functionalization stabilize the graphene like borophene? Comput Mater Sci 156:56–66

    Article  CAS  Google Scholar 

  6. Shahrokhi M, Mortazavi B (2018) Lithium halide monolayer sheets: First-principles many-body calculations. Comput Mater Sci 143:103–111

    Article  CAS  Google Scholar 

  7. Mortazavi B, Shahrokhi M, Xe Z, Rabczuk T (2018) Boron-graphdiyne: superstretchablesemiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ions storage. J Mater Chem A 6:11022–11036

    Article  CAS  Google Scholar 

  8. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  CAS  Google Scholar 

  9. Zhong X, Yap YK, Pandey R, Karna SP (2011) First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers. Phys Rev B 83:193403

    Article  Google Scholar 

  10. Chegel R (2017) Bias induced modulation of electrical and thermal conductivity and heat Capacity of BN and BN/graphene bilayers. Physica B 511:26–35

    Article  CAS  Google Scholar 

  11. Hoi BD, Mirabbaszadeh K, Habibiyan H, Yarmohammadi M (2017) Optical Absorption of SiC, BN, and BeO Nanosheets in Holstein Model. J. Supercond Nov Magn 30:2435–2444

    Article  CAS  Google Scholar 

  12. Tabert CJ, Nicol EJ (2012) Dynamical conductivity of AA-stacked bilayer graphene. Phys Rev B 86:075439

    Article  Google Scholar 

  13. Kadi F, Malic E (2014) Optical properties of Bernal-stacked bilayer graphene: a Theoretical study. Phys Rev B 89:045419

    Article  Google Scholar 

  14. Liu CC, Feng W, Yao Y (2011) Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107:076802

    Article  Google Scholar 

  15. Persson C, Lindefelt U (1996) Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys Rev B 54:10257

    Article  CAS  Google Scholar 

  16. Morkoc H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys 76:1363

    Article  CAS  Google Scholar 

  17. Ettisserry D, Goldsman N, Lelis A (2014) A methodology to identify and quantify mobility-reducing defects in 4H-silicon carbide power metal-oxide-semiconductor field-effect transistors. J Appl Phys 115:103706

    Article  Google Scholar 

  18. Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S (2010) First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys Rev B 81:075433

    Article  Google Scholar 

  19. Shin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B 80:155453

    Article  Google Scholar 

  20. Gao BL, Wang B, Xu QQ, Xiong SJ (2011) Ferromagnetic and antiferromagnetic properties of the fluorinated bilayer SiC sheets. Phys E 43:1394–1397

    Article  CAS  Google Scholar 

  21. Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B: Condens Matter Mater Phys 80:155453

    Article  Google Scholar 

  22. An Z, Zhang R, Fang D (2019) Synthesis of monolithic SiC aerogels with high mechanical strength and low thermal conductivity. Ceram Int 45(9):11368–11374

    Article  CAS  Google Scholar 

  23. Zheng Q, Li C, Rai A, Leach JH, Broido DA, Cahill DG (2019) Thermal conductivity of GaN, 71GaN, and SiC from 150 K to 850 K. Phys Rev Mater 3:014601

    Article  CAS  Google Scholar 

  24. Fukuda S, Kato T, Okamoto Y, Nakatsugawa H, Kitagawa H, Yamaguchi S (2011) Thermoelectric Properties of Single-Crystalline SiC and Dense Sintered SiC for Self-Cooling Devices. Jpn J Appl Phys 50:031301

    Article  Google Scholar 

  25. Li BL, Chen KQ (2017) Effects of electron-phonon interactions on the spin-dependent Seebeck effect in graphene nanoribbons. Carbon 119:548–554

    Article  CAS  Google Scholar 

  26. Rezania H, Ghorlivand VA (2018) Seebeck coefficient and thermal conductivity of doped armchair graphene nanoribbon in the presence of magnetic field. Mater Res Bull 99:18–22

    Article  CAS  Google Scholar 

  27. Rezania H, Azizi F (2018) The effects of transverse magnetic field and local electronic interaction on thermoelectric properties of monolayer graphene. Solid State Commun 270:65–71

    Article  CAS  Google Scholar 

  28. Abbasi A, Rezania H (2019) Electrical conductivity of undoped bilayer Graphene: Beyond nearest neighbor approximation. Chem Phys 525:110384

    Article  CAS  Google Scholar 

  29. Li HP, Zhang RQ (2012) Vacancy-defect–induced diminution of thermal conductivity in silicone. Europhys Lett 99:36001

    Article  Google Scholar 

  30. Hu M, Zhang X, Poulikakos D (2013) Anomalous thermal response of silicene to uniaxial stretching. Phys Rev B 87:195417

    Article  Google Scholar 

  31. Zhang X, Xie H, Hu M, Bao H, Yue S, Qin G, Su G (2014) Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys Rev B 89:054310

    Article  Google Scholar 

  32. Xie H, Hu M, Bao H (2014) Thermal conductivity of silicene from first-principles. Appl Phys Lett 104:131906

    Article  Google Scholar 

  33. Mahan G D (2013) Many-particle physics. Springer Science & Business Media.

  34. Grosso G, Parravicini GP (2000) Solid State Physics. Academic Press, London

    Google Scholar 

  35. Nolas G S, Sharp J, Goldsmid J (2001) Thermoelectrics: Basic Principles and New Materials Developments, Springer.

  36. Paul I, Kotliar G (2003) Thermal transport for many-body tight-binding models. Phys Rev B 67:115131

    Article  Google Scholar 

  37. Chegel R (2017) Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers. Phys B Condens Matter 511:26–35

    Article  CAS  Google Scholar 

  38. Rezania H, Nouri E (2018) Static thermal conductivity of doped gapped graphene like structure in the presence of magnetic field. Comput Condens Matt 16:e00298

    Article  Google Scholar 

  39. Markov M, Hu X, Liu HC, Liu N, Poon SJ, Esfarjani K, Zebarjadi M (2018) Semi-metals as potential thermoelectric materials. Sci Rep 8:9876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar Astinchap.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, M., Astinchap, B. Influence of Magnetic Field and Bias Voltage on the Thermal Conductivity and Seebeck Coefficient of AA-Stacked Bilayer SiC. Silicon 13, 1223–1230 (2021). https://doi.org/10.1007/s12633-020-00501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00501-6

Keywords

Navigation