Skip to main content
Log in

Fabrication, Electrical and Photovoltaic Characterizations of SnSb2S4/n-Si Heterojunction

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An inexpensive spray pyrolysis technique was effectively used to form a p-type SnSb2S4 thin film on n-type Si wafer for the first time to produce SnSb2S4/n-Si heterojunction. The capacitance-voltage estimations of the SnSb2S4/n-Si heterojunction have been recorded in the dark condition at 1 MHZ and demonstrated that the junction has an abrupt junction behavior. The dark current-voltage curve showed that the SnSb2S4/ n-Si heterojunction exhibits good rectifying properties. The device parameters represented in the series resistance (Rs) and ideality factor (n) were obtained from the current-voltage estimations in the dark conditions. In addition, the calculated values of ideality factor (n) establish to be greater than unity and they were decreased by rising the annealed temperature. According to the illumination condition with an intensity of 100 mW/cm2, we calculate the fill factor (FF), open-circuit voltage (VOC) and the solar efficiency (η) for the SnSb2S4/ n-Si heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lefebvre I, Lannoo M, Allan G, Ibanez A, Fourcade J, Jumas JC, Beaurepaire E (1987) Electronic properties of antimony chalcogenides. Phys Rev Lett 59:2471–2474

    Article  CAS  Google Scholar 

  2. Olivier-Fourcade J, Ibanez A, Jumas JC, Maurin M, Lefebvre I, Lippens P, Lannoo M, Allan G (1990) Chemical bonding and electronic properties in antimony chalcogenides. J Solid State Chem 87:366–377

    Article  CAS  Google Scholar 

  3. Christian P, O’Brien P (2005) The preparation of antimony chalcogenide and oxide nanomaterials. J Mater Chem 15:4949–4954

    Article  CAS  Google Scholar 

  4. Salem AM, Selim MS (2001) Structure and optical properties of chemically deposited Sb2S3 thin films. J Phys D Appl Phys 34:12–17

    Article  CAS  Google Scholar 

  5. Ghosh C, Varma BP (1979) Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films 60:61–65

    Article  CAS  Google Scholar 

  6. Gadakh SR, Bhosale CH (2003) Effect of concentration of complexing agent (tartaric acid) on the properties of spray deposited Sb2S3 thin films. Mater Chem Phys 78:367–371

    Article  CAS  Google Scholar 

  7. Krishnan B, Arato A, Cardenas E, Roy TKD, Castillo GA (2008) On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films. Appl Surf Sci 254:3200–3206

    Article  CAS  Google Scholar 

  8. Moon S-J, Itzhaik Y, Yum J-H, Zakeeruddin SM, Hodes G, Grätzel M (2010) Sb2S3-based mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524–1527

    Article  CAS  Google Scholar 

  9. Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO2 solar cells. J Phys Chem C 113:4254–4256

    Article  CAS  Google Scholar 

  10. Garza C, Shaji S, Arato A, Perez Tijerina E, Alan Castillo G, Das Roy TK, Krishnan B (2011) P-type CuSbS2 thin films by thermal diffusion of copper into Sb2S3. Sol Energy Mater Sol Cells 95:2001–2005

    Article  CAS  Google Scholar 

  11. Fernandez AM, Merino MG (2000) Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films 366:202–206

    Article  CAS  Google Scholar 

  12. Soliman HS, Khalifa BA, El-Nahass MM, Ibrahim EM (2004) Temperature dependence of the structural and optical properties of thermally vacuum evaporated InSbSe3 thin films. Phys B Condens Matter 351:11–18

    Article  CAS  Google Scholar 

  13. Zimmermann E, Pfadler T, Kalb J et al (2015) Toward high-efficiency solution-processed planar heterojunction Sb2S3 solar cells. Adv Sci 2:1500059

    Article  Google Scholar 

  14. El Radaf IM (2019) Structural, optical, optoelectrical and photovoltaic properties of the thermally evaporated Sb2Se3 thin films. Appl Phys A Mater Sci Process 125. https://doi.org/10.1007/s00339-019-3114-7

  15. Osman M, Salem SM, El Radaf I, et al (2013) Fabricatiom and characterization CuSbS2/n-Si solar cells. J Appl Sci Researsh

    Google Scholar 

  16. Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y (2012) Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Appl Surf Sci 261:510–514

    Article  CAS  Google Scholar 

  17. Gil EK, Lee S-J, Sung S-J, Cho KY, Kim DH (2016) Spin-coating process of an inorganic Sb2S3 thin film for photovoltaic applications. J Nanosci Nanotechnol 16:10763–10766

    Article  CAS  Google Scholar 

  18. Rajpure KY, Bhosale CH (2000) Effect of composition on the structural, optical and electrical properties of sprayed Sb2S3 thin films prepared from non-aqueous medium. J Phys Chem Solids 61:561–568

    Article  CAS  Google Scholar 

  19. Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue DJ, Lv L, Huang H, Niu D, Tang J (2014) Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl Mater Interfaces 6:10687–10695

    Article  CAS  Google Scholar 

  20. Hameed TA, El Radaf IM, Elsayed-Ali HE (2018) Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device. J Mater Sci Mater Electron 29:12584–12594. https://doi.org/10.1007/s10854-018-9375-7

    Article  CAS  Google Scholar 

  21. Yahia IS, El Radaf IM, Salem AM, Sakr GB (2019) Chemically deposited Ni-doped CdS nanostructured thin films: optical analysis and current-voltage characteristics. J Alloys Compd 776:1056–1062

    Article  CAS  Google Scholar 

  22. Hameed TA, Wassel AR, El Radaf IM (2019) Investigating the effect of thickness on the structural, morphological, optical and electrical properties of AgBiSe2 thin films. J Alloys Compd 805:1–11. https://doi.org/10.1016/j.jallcom.2019.07.041

    Article  CAS  Google Scholar 

  23. El Radaf IM, Abdelhameed RM (2018) Surprising performance of graphene oxide/tin dioxide composite thin films. J Alloys Compd 765:1174–1183. https://doi.org/10.1016/j.jallcom.2018.06.277

  24. El-Bana MS, El Radaf IM, Fouad SS, Sakr GB (2017) Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J Alloys Compd 705:333–339

    Article  CAS  Google Scholar 

  25. El-Zaidia EFM, Darwish AAA (2020) Electronic properties and photovoltaic performance of VONc-ZnO hybrid junction solar cells. Synth Met 259:116227

    Article  CAS  Google Scholar 

  26. Darwish AAA, Ali HAM (2019) Formation of noncrystalline GeSeSn/c-Si heterojunction: electronic and optoelectronic studies. Phys B Condens Matter 571:188–192. https://doi.org/10.1016/j.physb.2019.07.005

    Article  CAS  Google Scholar 

  27. Ashery A, El Radaf IM, Elnasharty MMM (2018) Electrical and dielectric characterizations of Cu2ZnSnSe4/n-Si Heterojunction. Silicon

  28. Hamrouni S, AlKhalifah MS, El-Bana MS et al (2018) Deposition and characterization of spin-coated n-type ZnO thin film for potential window layer of solar cell. Appl Phys A Mater Sci Process 124:555

    Article  Google Scholar 

  29. Nasr M, El Radaf IM, Mansour AM (2018) Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids 115. https://doi.org/10.1016/j.jpcs.2017.12.029

  30. Farag AAM, Yahia IS, Fadel M (2009) Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode. Int J Hydrog Energy 34:4906–4913

    Article  CAS  Google Scholar 

  31. Rao GK (2017) Electrical and photoresponse properties of vacuum deposited Si/Al: ZnSe and Bi: ZnTe/Al: ZnSe photodiodes. Appl Phys A Mater Sci Process 123:224

    Article  Google Scholar 

  32. Ganesh V, Manthrammel MA, Shkir M, Yahia IS, Zahran HY, Yakuphanoglu F, AlFaify S (2018) Organic semiconductor photodiode based on indigo carmine/n-Si for optoelectronic applications. Appl Phys A Mater Sci Process 124:424

    Article  Google Scholar 

  33. Saha B, Sarkar K, Bera A, Deb K, Thapa R (2017) Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure. Appl Surf Sci 418:328–334

    Article  CAS  Google Scholar 

  34. Yakuphanoglu F, Caglar Y, Caglar M, Ilican S (2010) ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process 13:137–140

    Article  CAS  Google Scholar 

  35. Zedan IT, El-Menyawy EM, Nawar HH (2019) Electrical and photoresponse characteristics of 8-(1H-indol-3-ylazo)-naphthalene-2-sulfonic acid/n-Si photodiode. Opto-Electronics Rev 27:348–354

    Article  Google Scholar 

  36. Farag AAM, Yahia IS (2011) Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synth Met 161:32–39

    Article  CAS  Google Scholar 

  37. El-Menyawy EM, Ashery A, Azab AM, Zeama MG (2014) Current–voltage–temperature characteristics and magnetic response of co/n-CuO/p-Si/Al heterojunction diode. Superlattice Microst 71:275–284

    Article  CAS  Google Scholar 

  38. Darwish AAA, El-Shazly EAA, Attia AA, El-Rahman KFA (2016) Dark electrical properties and photovoltaic performance of organic/inorganic (SnPcCl 2/p-Si) solar cells. J Mater Sci Mater Electron 27:8786–8792

    Article  CAS  Google Scholar 

  39. Ashery A, Farag AAM, Zeama M (2014) Structural, electrical and phototransient characteristics of liquid phase epitaxial GaP based heterojunction for photodiode application. Superlattice Microst 66:136–147

    Article  CAS  Google Scholar 

  40. El Radaf IM, Al-Kotb MS, Nasr M, Yahia IS (2019) Fabrication and electrical characterization of the InSbS 3 /n-Si heterojunction. J Alloys Compd 788:206–211. https://doi.org/10.1016/j.jallcom.2019.02.189

    Article  CAS  Google Scholar 

  41. El Radaf IM, Elsaeedy HI, Yakout HA, El Sayed MT (2019) Junction parameters and electrical characterization of the Al/n-Si/Cu2CoSnS4/Au Heterojunction. J Electron Mater 48:6480–6486. https://doi.org/10.1007/s11664-019-07445-7

    Article  CAS  Google Scholar 

  42. Radaf IM El, Nasr M, Mansour AM (2018) Structural, electrical and photovltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater Res Express. https://doi.org/10.1088/2053-1591/aaa25e

  43. Fouad S, El Radaf I, Sharma P, El-Bana M (2018) Multifunctional CZTS thin films: structural, optoelectrical, electrical and photovoltaic properties. J Alloys Compd 757:124–133. https://doi.org/10.1016/j.jallcom.2018.05.033

    Article  CAS  Google Scholar 

  44. Abd-El-Rahman KF, Darwish AAA (2011) Fabrication and electrical characterization of p-Sb2S3/n-Si heterojunctions for solar cells application. Curr Appl Phys 11:1265–1268

    Article  Google Scholar 

  45. El Radaf IM, Hameed TA, Yahia IS (2018) Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater Res Express 5:66416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. El Radaf.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zahrani, H.Y.S., El Radaf, I.M. Fabrication, Electrical and Photovoltaic Characterizations of SnSb2S4/n-Si Heterojunction. Silicon 13, 1261–1267 (2021). https://doi.org/10.1007/s12633-020-00512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00512-3

Keywords

Navigation