Skip to main content
Log in

Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M=Co, Ni, Mg, Zn)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The unique adsorption performance of metal-organic frameworks (MOFs) indicates a new direction for gas separation and purification. The low-temperature distillation, as a traditional technique for hydrogen isotope separation, is limited as it is a high energy- and cost-intensive process. Instead of utilizing such a conventional separation route, we use ordered microporous frameworks based on a physical adsorption mechanism to solve the challenge of hydrogen isotope separation. Herein we analyze M-MOF-74 (M=Co, Ni, Mg, Zn), featuring a hexagonal channel about 11 Å and high density of open metal sites, for their ability to separate and purify deuterium from the hydrogen isotope mixture by dynamic column breakthrough experiments. Our results show that the combination of the strength of binding sites, density of coordinatively unsaturated metal sites and hydrogen isotope adsorption capacity of materials renders Co-MOF-74 as an optimal adsorbent for the capture of deuterium from hydrogen isotope mixtures in a simulated industrial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai J, Xing Y, Zhao X. RSC Adv, 2012, 2: 8579–8586

    Article  CAS  Google Scholar 

  2. Kapelewski MT, Runčevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA, Ayala A, Gennett T, FitzGerald SA, Brown CM, Long JR. Chem Mater, 2018, 30: 8179–8189

    Article  CAS  Google Scholar 

  3. Gygi D, Bloch ED, Mason JA, Hudson MR, Gonzalez MI, Siegelman RL, Darwish TA, Queen WL, Brown CM, Long JR. Chem Mater, 2016, 28: 1128–1138

    Article  CAS  Google Scholar 

  4. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM. Science, 2003, 300: 1127–1129

    Article  CAS  PubMed  Google Scholar 

  5. Oh H, Hirscher M. Eur J Inorg Chem, 2016, 27: 4278–4289

    Article  CAS  Google Scholar 

  6. Tanaka H, Kanoh H, Yudasaka M, Iijima S, Kaneko K. J Am Chem Soc, 2005, 127: 7511–7516

    Article  CAS  PubMed  Google Scholar 

  7. Noguchi D, Tanaka H, Kondo A, Kajiro H, Noguchi H, Ohba T, Kanoh H, Kaneko K. J Am Chem Soc, 2008, 130: 6367–6372

    Article  CAS  PubMed  Google Scholar 

  8. Chu XZ, Cheng ZP, Xiang XX, Xu JM, Zhao YJ, Zhang WG, Lv JS, Zhou YP, Zhou L, Moon DK, Lee CH. Int J Hydrogen Energy, 2014, 39: 4437–4446

    Article  CAS  Google Scholar 

  9. Nguyen TX, Jobic H, Bhatia SK. Phys Rev Lett, 2010, 105: 085901

    Article  CAS  PubMed  Google Scholar 

  10. Kim JY, Oh H, Moon HR. Adv Mater, 2019, 31: 1805293

    Article  CAS  Google Scholar 

  11. Yaris R, Sams John R. J. J Chem Phys, 1962, 37: 571–576

    Article  CAS  Google Scholar 

  12. Bachman JE, Reed DA, Kapelewski MT, Chachra G, Jonnavittula D, Radaelli G, Long JR. Energy Environ Sci, 2018, 11: 2423–2431

    Article  CAS  Google Scholar 

  13. Suh MP, Park HJ, Prasad TK, Lim DW. Chem Rev, 2012, 112: 782–835

    Article  CAS  PubMed  Google Scholar 

  14. Zhao X, Wang Y, Li DS, Bu X, Feng P. Adv Mater, 2018, 30: 1705189

    Article  CAS  Google Scholar 

  15. Xiao B, Wheatley PS, Zhao X, Fletcher AJ, Fox S, Rossi AG, Megson IL, Bordiga S, Regli L, Thomas KM, Morris RE. J Am Chem Soc, 2007, 129: 1203–1209

    Article  CAS  PubMed  Google Scholar 

  16. Chen B, Zhao X, Putkham A, Hong K, Lobkovsky EB, Hurtado EJ, Fletcher AJ, Thomas KM. J Am Chem Soc, 2008, 130: 6411–6423

    Article  CAS  PubMed  Google Scholar 

  17. Fitzgerald SA, Hopkins J, Burkholder B, Friedman M, Rowsell JLC. Phys Rev B, 2010, 81: 104305

    Article  CAS  Google Scholar 

  18. Liu D, Wang W, Mi J, Zhong C, Yang Q, Wu D. Ind Eng Chem Res, 2012, 51: 434–442

    Article  CAS  Google Scholar 

  19. FitzGerald SA, Pierce CJ, Rowsell JLC, Bloch ED, Mason JA. J Am Chem Soc, 2013, 135: 9458–9464

    Article  CAS  PubMed  Google Scholar 

  20. Oh H, Park KS, Kalidindi SB, Fischer RA, Hirscher M. J Mater Chem A, 2013, 1: 3244–3248

    Article  CAS  Google Scholar 

  21. Si Y, He X, Jiang J, Duan Z, Wang W, Yuan D. Nano Research, 2019

    Google Scholar 

  22. Teufel J, Oh H, Hirscher M, Wahiduzzaman M, Zhechkov L, Kuc A, Heine T, Denysenko D, Volkmer D. Adv Mater, 2013, 25: 635–639

    Article  CAS  PubMed  Google Scholar 

  23. Oh H, Kalidindi SB, Um Y, Bureekaew S, Schmid R, Fischer RA, Hirscher M. Angew Chem Int Ed, 2013, 52: 13219–13222

    Article  CAS  Google Scholar 

  24. Kim JY, Zhang L, Balderas-Xicohténcatl R, Park J, Hirscher M, Moon HR, Oh H. J Am Chem Soc, 2017, 139: 17743–17746

    Article  CAS  PubMed  Google Scholar 

  25. Paschke B, Denysenko D, Bredenkötter B, Sastre G, Wixforth A, Volkmer D. Chem Eur J, 2019, 25: 10803–10807

    Article  CAS  PubMed  Google Scholar 

  26. Mondal SS, Kreuzer A, Behrens K, Schütz G, Holdt HJ, Hirscher M. ChemPhysChem, 2019, 20: 1311–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cao D, Huang H, Lan Y, Chen X, Yang Q, Liu D, Gong Y, Xiao C, Zhong C, Peng S. J Mater Chem A, 2018, 6: 19954–19959

    Article  CAS  Google Scholar 

  28. Oh H, Savchenko I, Mavrandonakis A, Heine T, Hirscher M. ACS Nano, 2014, 8: 761–770

    Article  CAS  PubMed  Google Scholar 

  29. Kim JY, Balderas-Xicohténcatl R, Zhang L, Kang SG, Hirscher M, Oh H, Moon HR. J Am Chem Soc, 2017, 139: 15135–15141

    Article  CAS  PubMed  Google Scholar 

  30. Weinrauch I, Savchenko I, Denysenko D, Souliou SM, Kim HH, Le Tacon M, Daemen LL, Cheng Y, Mavrandonakis A, Ramirez-Cuesta AJ, Volkmer D, Schütz G, Hirscher M, Heine T. Nat Commun, 2017, 8: 14496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beenakker JJM, Borman VD, Krylov SY. Chem Phys Lett, 1995, 232: 379–382

    Article  CAS  Google Scholar 

  32. Kowalczyk P, Gauden PA, Terzyk AP, Furmaniak S. J Phys-Condens Matter, 2009, 21: 144210

    Article  PubMed  CAS  Google Scholar 

  33. Caskey SR, Wong-Foy AG, Matzger AJ. J Am Chem Soc, 2008, 130: 10870–10871

    Article  CAS  PubMed  Google Scholar 

  34. Zhou W, Wu H, Yildirim T. J Am Chem Soc, 2008, 130: 15268–15269

    Article  CAS  PubMed  Google Scholar 

  35. Bloch ED, Murray LJ, Queen WL, Chavan S, Maximoff SN, Bigi JP, Krishna R, Peterson VK, Grandjean F, Long GJ, Smit B, Bordiga S, Brown CM, Long JR. J Am Chem Soc, 2011, 133: 14814–14822

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, Sinelnikov R, Huang Y. Langmuir, 2016, 32: 5468–5479

    Article  CAS  PubMed  Google Scholar 

  37. Cattaneo D, Warrender SJ, Duncan MJ, Castledine R, Parkinson N, Haley I, Morris RE. Dalton Trans, 2016, 45: 618–629

    Article  CAS  PubMed  Google Scholar 

  38. Rowsell JLC, Yaghi OM. J Am Chem Soc, 2006, 128: 1304–1315

    Article  CAS  PubMed  Google Scholar 

  39. Dietzel PDC, Georgiev PA, Eckert J, Blom R, Strässle T, Unruh T. Chem Commun, 2010, 46: 4962–4964

    Article  CAS  Google Scholar 

  40. Grant Glover T, Peterson GW, Schindler BJ, Britt D, Yaghi O. Chem Eng Sci, 2011, 66: 163–170

    Article  CAS  Google Scholar 

  41. Oh H, Maurer S, Balderas-Xicohtencatl R, Arnold L, Magdysyuk OV, Schütz G, Müller U, Hirscher M. Int J Hydrogen Energy, 2017, 42: 1027–1035

    Article  CAS  Google Scholar 

  42. Myers AL, Prausnitz JM. AIChE J, 1965, 11: 121–127

    Article  CAS  Google Scholar 

  43. Lin RB, Li L, Zhou HL, Wu H, He C, Li S, Krishna R, Li J, Zhou W, Chen B. Nat Mater, 2018, 17: 1128–1133

    Article  CAS  PubMed  Google Scholar 

  44. Liao PQ, Chen XW, Liu SY, Li XY, Xu YT, Tang M, Rui Z, Ji H, Zhang JP, Chen XM. Chem Sci, 2016, 7: 6528–6533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu Z, Wang Y, Farooq S, Zhao D. AIChE J, 2017, 63: 4103–4114

    Article  CAS  Google Scholar 

  46. Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC. Langmuir, 2008, 24: 4772–4777

    Article  CAS  PubMed  Google Scholar 

  47. Zhao XB, Xiao B, Fletcher AJ, Thomas KM. J Phys Chem B, 2005, 109: 8880–8888

    Article  CAS  PubMed  Google Scholar 

  48. Zhao X, Villar-Rodil S, Fletcher AJ, Thomas KM. J Phys Chem B, 2006, 110: 9947–9955

    Article  CAS  PubMed  Google Scholar 

  49. Xing Y, Cai J, Li L, Yang M, Zhao X. Phys Chem Chem Phys, 2014, 16: 15800–15805

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21771177), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB20000000), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-SLH019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqiang Yuan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

11426_2020_9722_MOESM1_ESM.docx

Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M=Co, Ni, Mg, Zn)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Y., Wang, W., El-Sayed, ES.M. et al. Use of breakthrough experiment to evaluate the performance of hydrogen isotope separation for metal-organic frameworks M-MOF-74 (M=Co, Ni, Mg, Zn). Sci. China Chem. 63, 881–889 (2020). https://doi.org/10.1007/s11426-020-9722-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9722-2

Keywords

Navigation