Skip to main content
Log in

Novel insight at the Effect of Cold Atmospheric Pressure Plasma on the Activity of Enzymes Essential for the Germination of Pea (Pisum sativum L. cv. Prophet) Seeds

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Great attention is currently being paid to the application of non-thermal plasma in agriculture. Seed germination is the first and critical time in the life cycle of each plant. Cold atmospheric pressure plasma (CAPP) generated by Diffuse Coplanar Surface Barrier Discharge, working at atmospheric pressure in ambient air, oxygen or nitrogen atmosphere in different time applications (60, 180, 300 s) was used to investigate its influence on early stages of germination processes in pea (Pisum sativum L. cv. Prophet). For evaluation of physiological parameters germination, the imbibition rate, percentage of germination, germination potential, germination index, seeds and seedlings vitality index, and seedlings length index were determined. In this work, also CAPP influence on dehydrogenases and lytic enzymes (amylase, glucanase and protease) as well as genotoxic effects were studied. Infrared spectra of pea seeds surface demonstrate that reactive oxygen and nitrogen species as well as UV radiation produced in plasma cause oxidation of lipids and polysaccharides on the surface of samples and lead to increase of wettability related to increased imbibition which can accelerate germination. A significant positive effect had mainly CAPP generated in air and nitrogen atmosphere at treatment time of 60 s on the studied germination and growth parameters and overall activation of lytic enzymes in pea seeds compared to untreated control. Increased concentrations of radicals in young 3-day old seedlings and activation of antioxidant enzymes suggest that low plasma doses act as low stress, which paradoxically has a stimulating effect on germination, growth and development of seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Morent R, De Geyter N (2011) Inactivation of bacteria by non-thermal plasmas. In: Biomed Eng Challenges, pp 25–50

  2. Park G, Park S, Choi M et al (2012) Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci Technol 21:043001

    Article  CAS  Google Scholar 

  3. Puač N, Gherardi M, Shiratani M (2018) Plasma agriculture: a rapidly emerging field. Plasma Process Polym 15:1700174

    Article  CAS  Google Scholar 

  4. Meiqiang Y, Mingjing H, Buzhou M, Tengcai M (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 7:3143

    Article  Google Scholar 

  5. Dubinov AE, Lazarenko EM, Selemir VD (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 28:180–183

    Article  Google Scholar 

  6. Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676

    Article  CAS  Google Scholar 

  7. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:3–10

    Article  CAS  Google Scholar 

  8. Kyzek S, Holubová Ľ, Medvecká V et al (2019) Cold atmospheric pressure plasma can induce adaptive response in pea seeds. Plasma Chem Plasma Process 39:475–486

    Article  CAS  Google Scholar 

  9. Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99:5104–5109

    Article  CAS  PubMed  Google Scholar 

  10. Ling L, Jiafeng J, Jiangang L et al (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia (Bratislava) 67:490–497

    Article  CAS  Google Scholar 

  12. Šerá B, Špatenka P, Šerý M et al (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38:2963–2968

    Article  Google Scholar 

  13. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:453–462

    Article  CAS  Google Scholar 

  14. Menegus F, Cattaruzza L, Chersi A et al (1989) Differences in the anaerobic lactate-succinate production and in the changes of cell sap pH for plants with high and low resistance to anoxia. Plant Physiol 90:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schnarrenberger C, Martin W (2002) Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants: a case study of endosymbiotic gene transfer. Eur J Biochem 269:868–883

    Article  CAS  PubMed  Google Scholar 

  16. Luo W, Muller JG, Rachlin EM, Burrows CJ (2001) Characterization of hydantoin products from one-electron oxidation of 8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem Res Toxicol 14:927–938

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59:2522–2526

    CAS  PubMed  Google Scholar 

  18. Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci 95:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Černák M, Černáková L, Hudec I et al (2009) Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806

    Article  CAS  Google Scholar 

  20. Odrášková M, Ráheľ J, Zahoranová A et al (2008) Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 28:203–211

    Article  CAS  Google Scholar 

  21. Homola T, Matoušek J, Medvecká V et al (2012) Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning. Appl Surf Sci 258:7135–7139

    Article  CAS  Google Scholar 

  22. Bónová L, Zahoranová A, Kováčik D et al (2015) Atmospheric pressure plasma treatment of flat aluminum surface. Appl Surf Sci 331:79–86

    Article  CAS  Google Scholar 

  23. Zahoranová A, Henselová M, Hudecová D et al (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414

    Article  CAS  Google Scholar 

  24. Abdul-Baki A, Anderson J (1973) Vigor determination in soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Matušíková I, Salaj J, Moravčíková J et al (2005) Tentacles of in vitro-grown round-leaf sundew (Drosera rotundifolia L.) show induction of chitinase activity upon mimicking the presence of prey. Planta 222:1020–1027

    Article  PubMed  CAS  Google Scholar 

  27. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    Article  CAS  Google Scholar 

  28. Nelson N (1944) A photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380

    Article  CAS  Google Scholar 

  29. Kumar D, Yusuf M, Singh P et al (2014) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio Protoc 4:3–6

    Article  Google Scholar 

  30. Frič F, Fuchs W (1970) Veränderungen der Aktivität einiger Enzyme im Weizenblatt in Abhängigkeit von der temperaturlabilen Verträglichkeit für Puccinia graminis tritici. J Phytopathol 67:161–174

    Article  Google Scholar 

  31. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  32. Hartmann A, Agurell E, Beevers C et al (2003) Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18:45–51

    Article  CAS  PubMed  Google Scholar 

  33. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  34. Gichner T, Patková Z, Száková J et al (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62:113–119

    Article  CAS  Google Scholar 

  35. Chankova S, Bryant P (2002) Acceleration of DNA-double strand rejoining during the adaptive response of Chlamydomonas reinhardtii. Radiat Biol Radioecol 42:600–603

    CAS  Google Scholar 

  36. Muslimović A, Nyström S, Gao Y, Hammarsten O (2009) Numerical analysis of etoposide induced DNA breaks. PLoS ONE 4:e5859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dod R, Banerjee G, Saini S (2012) Adsorption of methylene blue using green pea peels (Pisum sativum): a cost-effective option for dye-based wastewater treatment. Biotechnol Bioprocess Eng 17:862–874

    Article  CAS  Google Scholar 

  38. Karunakaran C, Vijayan P, Stobbs J et al (2020) High throughput nutritional profiling of pea seeds using Fourier transform mid-infrared spectroscopy. Food Chem 309:125585

    Article  CAS  PubMed  Google Scholar 

  39. Verma N, Mukesh CB, Vivek K (2011) Pea peel waste: a lignocellulosic waste and its utility in cellulase production. Bio Resour 6:1505–1519

    CAS  Google Scholar 

  40. Nawrath C (2002) The biopolymers cutin and suberin. Arab book/American Soc Plant Biol 1

  41. Shao S, Meyer CJ, Ma F et al (2007) The outermost cuticle of soybean seeds: chemical composition and function during imbibition. J Exp Bot 58:1071–1082

    Article  CAS  PubMed  Google Scholar 

  42. Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z (2018) Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Process 38:969–988

    Article  CAS  Google Scholar 

  43. Smýkal P, Vernoud V, Blair MW et al (2014) The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci 5:351

    PubMed  PubMed Central  Google Scholar 

  44. Tong J, He R, Zhang X et al (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol 16:260–266

    Article  CAS  Google Scholar 

  45. Tomeková J, Kyzek S, Medvecká V et al (2019) Study of low-temperature plasma and its influence on DNA of pea seeds. In: Front Redox Biol Med 8th FiRBaM, Greifswald, Leibniz-Institut für Plasmaforsch und Technol Young Prof Work Plasma-Medicine 21

  46. Berwal MK, Ram C (2018) Superoxide dismutase: a stable biochemical marker for abiotic stress tolerance in higher plants. In: Abiotic Biot Stress Plants. IntechOpen

  47. Felzer BS, Cronin T, Reilly JM et al (2007) Impacts of ozone on trees and crops. Geoscience 339:784–798

    Article  CAS  Google Scholar 

  48. Corpas FJ (2016) Reactive nitrogen species (RNS) in plants under physiological and adverse environmental conditions: current view. Prog Bot 78:97–119

    Google Scholar 

  49. Dobrin D, Magureanu M, Mandache NB, Ionita MD (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29:255–260

    Article  CAS  Google Scholar 

  50. Mihai AL, Dobrin D, Magureanu M, Popa ME (2014) Positive effect of non-thermal plasma treatment on radish seeds. Rom Rep Phys 66:1110–1117

    Google Scholar 

  51. Meng Y, Qu G, Wang T et al (2017) Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chem Plasma Process 37:1105–1119

    Article  CAS  Google Scholar 

  52. Tadege M, Dupuis I, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4:320–324

    Article  CAS  PubMed  Google Scholar 

  53. Joshi R (2018) Role of enzymes in seed germination. Int J Creat Res Thoughts 6:1481–1485

    Google Scholar 

  54. Erofeeva EA (2018) Hormesis and paradoxical effects of pea (Pisum sativum L.) parameters upon exposure to formaldehyde in a wide range of doses. Ecotoxicology 27:569–577

    Article  CAS  PubMed  Google Scholar 

  55. Agathokleous E, Kitao M, Harayama H (2019) Temperature-induced hormesis in plants. J For Res 30:13–20

    Article  Google Scholar 

  56. Yan X, Zou F, Lu XP et al (2009) Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA. Appl Phys Lett 95:1–4

    Google Scholar 

  57. O’Connell D, Cox LJ, Hyland WB et al (2011) Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett 98:2011–2014

    Article  CAS  Google Scholar 

  58. Kim JY, Lee D, Ballato J et al (2012) Reactive oxygen species controllable non-thermal helium plasmas for evaluation of plasmid DNA strand breaks. Appl Phys Lett 101:224101

    Article  CAS  Google Scholar 

  59. Han X, Cantrell WA, Escobar EE, Ptasinska S (2014) Plasmid DNA damage induced by helium atmospheric pressure plasma jet. Eur Phys J D 68:46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the Contract No. APVV-16-0216 and by Project VEGA 1/0410/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kyzek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švubová, R., Kyzek, S., Medvecká, V. et al. Novel insight at the Effect of Cold Atmospheric Pressure Plasma on the Activity of Enzymes Essential for the Germination of Pea (Pisum sativum L. cv. Prophet) Seeds. Plasma Chem Plasma Process 40, 1221–1240 (2020). https://doi.org/10.1007/s11090-020-10089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10089-9

Keywords

Navigation