Skip to main content

Advertisement

Log in

The role of microglia in the development of neurodegeneration

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Microglia-mediated central nervous system (CNS) inflammation is one of the key features of various neurodegenerative diseases, including Parkinson’s and Alzheimer’s diseases. In the last few years, a number of studies have investigated the link between neurodegenerative diseases and CNS glial cells, in particular microglia. Microglial cells are the main resident immune cells and comprise approximately 10–15% of all CNS cells. Microglia at rest regulates CNS homeostasis via phagocytic activity, by removing pathogens and cell detritus. “Resting” microglia cells transform into an activated form and produce inflammatory mediators, thus protecting neurons and providing defense against invading pathogens. Excessive inflammation leads to neuronal damage and neurodegenerative diseases. Various microglial reactions at different stages of the disease can open up new directions for treatment interventions and modification of the inflammatory activity. This review focuses on the potential role of microglia and the dynamic M1/M2 phenotype changes that are critically linked to certain neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Kettenmann H, Hanisch U, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  2. Sorrenti V, Contarini G, Sut S, Dall’Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M (2018) Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol 9:183. https://doi.org/10.3389/fphar.2018.00183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glass C, Saijo K, Winner B, Marchetto M, Gage F (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu L, He D, Bai Y (2016) Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 53(10):6709–6715. https://doi.org/10.1007/s12035-015-9593-4

    Article  CAS  PubMed  Google Scholar 

  5. Anderson SA, Vetter ML (2019) Developmental roles of microglia: a window into mechanisms of disease. Dev Dyn 248(1):98–117. https://doi.org/10.1002/dvdy.1

    Article  PubMed  Google Scholar 

  6. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. B J Pharmacol 173(4):649–666. https://doi.org/10.1111/bph.13139

    Article  CAS  Google Scholar 

  7. Colton C, Wilcock D (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9(2):174–191. https://doi.org/10.2174/187152710791012053

    Article  CAS  PubMed  Google Scholar 

  8. Vay SU, Flitsch LG, Rabenstein M, Rogall R, Blaschke S, Kleinhaus J, Reinert N, Bach A, Fink GR, Schroeter M, Rueger MA (2018) The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation 15:226. https://doi.org/10.1186/s12974-018-1261-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanjabi S, Oh SA, Li MO (2017) Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 9(6):a022236. https://doi.org/10.1101/cshperspect.a022236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M (2014) Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation 11(1):161. https://doi.org/10.1186/s12974-014-0161-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scarpina F, Paschino C, Priano L, Mauro A (2020) Performance at the clock drawing test of individuals affected by Parkinson’s disease and healthy subjects: a retrospective study. Neurol Sci 41(4):843–849. https://doi.org/10.1007/s10072-019-04167-w

    Article  PubMed  Google Scholar 

  13. Kataoka H, Sugie K (2020) Serum adiponectin levels between patients with Parkinson’s disease and those with PSP. Neurol Sci 41(5):1–7. https://doi.org/10.1007/s10072-019-04216-4

    Article  Google Scholar 

  14. Lashuel H, Overk C, Oueslati A, Masliah E (2012) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48. https://doi.org/10.1038/nrn3406

    Article  CAS  Google Scholar 

  15. Lee E, Woo M, Moon P, Baek M, Choi I, Kim W, Junn E, Kim HS (2010) α-Synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185(1):615–623. https://doi.org/10.4049/jimmunol.0903480

    Article  CAS  PubMed  Google Scholar 

  16. Rojanathammanee L, Murphy E, Combs C (2011) Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. J Neuroinflammation 8(1):44. https://doi.org/10.1186/1742-2094-8-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde T, Das P (2010) IFN-γ promotes complement expression and attenuates amyloid plaque deposition in amyloid β precursor protein transgenic mice. J Immunol 184(9):5333–5343. https://doi.org/10.4049/jimmunol.0903382

    Article  CAS  PubMed  Google Scholar 

  18. Porras G, Li Q, Bezard E (2011) Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med 2(3):a009308. https://doi.org/10.1101/cshperspect.a009308

    Article  CAS  Google Scholar 

  19. Park J, Lim CS, Seo H, Park CA, Zhuo M, Kaang BK, Lee K (2015) Pain perception in acute model mice of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mol Pain 11:28. https://doi.org/10.1186/2Fs12990-015-0026-1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hou L, Zhou X, Zhang C, Wang K, Liu X, Che Y, Sun F, Huihua L, Wang Q, Zhang D, Honge JS (2017) NADPH oxidase-derived H2O2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson’s disease. Redox Biol 12:162–170. https://doi.org/10.1016/j.redox.2017.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532. https://doi.org/10.1016/S1474-4422(16)00062-4

    Article  PubMed  Google Scholar 

  22. Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, Blennow K, Landau S, Jagust W, Hansson O (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8(1):1214. https://doi.org/10.1038/s41467-017-01150-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prokop S, Miller K, Heppner F (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477. https://doi.org/10.1007/s00401-013-1182-x

    Article  CAS  PubMed  Google Scholar 

  24. Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP (2018) Role of microglia TLRs in neurodegeneration. Front Cell Neurosci 12:329. https://doi.org/10.3389/fncel.2018.00329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A (2013) Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Disease 4(12):e975. https://doi.org/10.1038/cddis.2013.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim C, Ho D, Suk J, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4(1):1562. https://doi.org/10.1038/ncomms2534

    Article  CAS  PubMed  Google Scholar 

  27. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smithm ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47(3):566–581. https://doi.org/10.1016/j.immuni.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yi ZQ, Zhao P, Zhang H, Shi Y, Shi H, Zhong J, Pan P (2020) Theory of mind in Alzheimer’s disease and amnestic mild cognitive impairment: a meta-analysis. Neur Sci 41(5):1–13. https://doi.org/10.1007/s10072-019-04215-5

    Article  Google Scholar 

  29. Martinez B, Peplow PV (2019) Amelioration of Alzheimer’s disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer’s disease. Neural Regen Res 14(7):1158–1176. https://doi.org/10.4103/1673-5374.251192

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mawuenyega K, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris J, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774. https://doi.org/10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kraft A, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee JM (2013) Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27(1):187–198. https://doi.org/10.1096/fj.12-208660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawahara K, Suenobu M, Yoshida A, Koga K, Hyodo A, Ohtsuka H, Kuniyasu A, Tamamaki N, Sugimoto Y, Nakayama H (2012) Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience 207:243–260. https://doi.org/10.1016/j.neuroscience.2012.01.049

    Article  CAS  PubMed  Google Scholar 

  33. Kiyota T, Ingraham K, Swan R, Jacobsen M, Andrews S, Ikezu T (2011) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther 19(7):724–733. https://doi.org/10.1038/gt.2011.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo X, Chen S (2012) The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener 1(1):9. https://doi.org/10.1186/2047-9158-1-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang Y, Li T, Li J, Yang J, Liu H, Zhang X, Le W (2013) Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ 21(3):369–380. https://doi.org/10.1038/cdd.2013.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee D, Ruiz C, Lebson L, Selenica M, Rizer J, Hunt J, Rojiani R, Reid P, Kammath S, Nash K (2013) Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 34(6):1610–1620. https://doi.org/10.1016/j.neurobiolaging.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saakyan SV, Myakoshina EB, Krichevskaya GI, Slepova OS, Panteleeva OG, Andryushin AE, Khoroshilova LP, Zakharova GP (2016) Testing patients with uveal melanoma for herpesvirus infections. Voprosy Virusologii 61(6):284–287. https://doi.org/10.18821/0507-4088-2016-61-6-284-287

    Article  Google Scholar 

  38. Lauro C, Catalano M, Trettel F, Limatola C (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann NY Acad Sci 1351(1):141–148. https://doi.org/10.1111/nyas.12805

    Article  CAS  PubMed  Google Scholar 

  39. Poniatowski Ł, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I (2016) Analysis of the role of CX3CL1 (Fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: insight into recent advances in actions of neurochemokine agents. Mol Neurobiol 54(3):2167–2188. https://doi.org/10.1007/s12035-016-9787-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mecca C, Giambanco I, Donato R, Arcuri C (2018) Microglia and aging: the role of the TREM2–DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci 19(1):318. https://doi.org/10.3390/ijms19010318

    Article  CAS  PubMed Central  Google Scholar 

  41. Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M (2013) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):AN20120066. https://doi.org/10.1042/2FAN20120066

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill V. Bulygin.

Ethics declarations

Conflict of interest

Authors have no potential conflicts of interest do disclose.

Ethical approval

The study was approved by the Ethical Committee of Bashkir State Medical University and I.M. Sechenov First Moscow State Medical University.

Informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitgareeva, A.R., Bulygin, K.V., Gareev, I.F. et al. The role of microglia in the development of neurodegeneration. Neurol Sci 41, 3609–3615 (2020). https://doi.org/10.1007/s10072-020-04468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04468-5

Keywords

Navigation