Skip to main content
Log in

Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

We studied yttrium extraction from untreated zircon sand processing waste tailings. Xenotime mineral as the rare earth element source with an abundance of yttrium (REY) was detected in sufficient grade for extraction. As much as 9.03% yttrium exists in zircon tailings (analysed by X-ray fluorescence spectrometry). The presence of yttrium was confirmed by X-ray diffractometry in xenotime minerals, which are yttrium carriers (Y-PO4). The purpose of this research was to determine the effect of leaching conditions on yttrium recovery from zircon sand after alkaline fusion treatment. Alkaline fusion was chosen to decompose phosphate into hydroxide in the xenotime mineral, which will reduce further required hydrometallurgical processing. Alkaline fusion was carried out for 3 h at 450 °C, with a ratio of sodium hydroxide to zircon tailings sand of ~ 1:1. The alkaline fusion product was leached with water, followed by hydrochloric acid treatment to leach the yttrium. Yttrium recovery reached 87% under optimum conditions (60 °C, 1 M HCl, and solid-to-liquid ratio = 1/10 for 7.5 min). A suitable model for yttrium dissolution with hydrochloric acid was diffusion through a solid particle ash layer. The calculated activation energy (EA) for this model was 20.21 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hatch GP (2012). Dynamics in the Global Market for Rare Earths. Elements. 8:341–346. https://doi.org/10.2113/gselements.8.5.341.

  2. Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46(2):3406–3414. https://doi.org/10.1021/es203518d

  3. Chakhmouradian AR, Wall F (2012) Rare earth elements: minerals, mines, magnets (and more). Elements. 8(5):333–340. https://doi.org/10.2113/gselements.8.5.333

  4. Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of rare earths, 1st edn. CRC Press, Mumbai

    Google Scholar 

  5. Talens Peiró L, Villalba Méndez G (2013) Material and energy requirement for rare earth production. JOM 65:1327–1340. https://doi.org/10.1007/s11837-013-0719-8

  6. Kumar V, Jha MK, Kumari A, Panda R, Kumar JR, Lee JY (2014) Recovery of rare earth metals (REMs) from primary and secondary resources: a review. San Die. https://doi.org/10.1002/9781118888551.ch16

  7. Kumari A, Panda R, Jha MK, Kumar JR, Lee JY (2015) Process development to recover rare earth metals from monazite mineral: A review. Miner Eng 79(4):102–115. https://doi.org/10.1016/j.mineng.2015.05.003

    Article  Google Scholar 

  8. Wang M, Tan Q, Chiang JF et al (2017) Recovery of rare and precious metals from urban mines—A review. Front Environ Sci Eng 11:1. https://doi.org/10.1007/s11783-017-0963-1

    Article  Google Scholar 

  9. Tunsu C, Menard Y, Eriksen DØ, Ekberg C, Petranikova M (2019) Recovery of critical materials from mine tailings: a comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. J Clean Prod 218(1):425–437. https://doi.org/10.1016/j.jclepro.2019.01.312

  10. Obuz HE, Günes H, Ugurluer D (2018) Leaching kinetics of rare-earth elements from complex ores by acidic leaching kinetics of rare-earth elements from complex ores by acidic solutions. Extr. 2018, Miner. Met. Mater. Ser.; Ottawa, Canada, pp 2391–98

  11. Binnemans K, Jones PT, Müller T et al (2018) Rare earths and the balance problem: how to deal with changing markets? J Sustain Metall 4:126–146. https://doi.org/10.1007/s40831-018-0162-8

  12. Bellenfant G, Guezennec A-G, Bodenan F, D’Hugues P, Cassard D (2013) Re-processing of mining waste: combining environmental management and metal recovery? Mine Clos.; Perth: Austraian Centre fro Geometrics, pp. 571–82

  13. Szamałek K, Konopka G, Zglinicki K, Marciniak-Maliszewska B (2013) New potential source of rare earth elements. Gospodarka Surowcami Mineralnymi/Mineral Resources Management 29(4):59–76. https://doi.org/10.2478/gospo-2013-0041

  14. Guyonnet D, Planchon M, Rollat A, Escalon V, Tuduri J, Charles N, Dubois D (2015) Material flow analysis applied to rare earth elements in Europe. J Clean Prod 2(5):107–215. https://doi.org/10.1016/j.jclepro.2015.04.123

    Article  Google Scholar 

  15. Priyono S, Febrianto EY (2012) Pemurnian Serbuk Zirkonia dari Zirkon. Jurnal Ilmu Pengetahuan dan Teknologi 30(1):1–6

    Google Scholar 

  16. Sun H-q, Song J, Sun S, Qu J-k, Lü W, Qi T (2019) Decomposition kinetics of zircon sand in NaOH sub-molten salt solution. Trans Nonferrous Metals Soc China (English Edition) 29(9):1948–1955. https://doi.org/10.1016/S1003-6326(19)65102-2

    Article  Google Scholar 

  17. Dahlan Y, Pramusanto, Saleh N, Setyatmoko E, Sumantri S, Rahmawati E (2009) Pembuatan zirkonia dengan metoda peleburan pasir zirkon. Pusat Penelitian dan Pengembangan Teknologi Mineral dan Batubara:1–38

  18. Suseno T (2015) Analisis Prospek Pasir Zirkon Indonesia DI Pasar Dunia. Jurnal Teknologi Mineral dan Batubra 11(1):61–77

    Google Scholar 

  19. Canovas CR, Chapron S, Arrachart G et al (2019) Leaching of rare earth elements (REEs) and impurities from phosphogypsum: a preliminary insight for further recovery of critical raw materials. J Clean Prod 219:225–235. https://doi.org/10.1016/j.jclepro.2019.02.104

  20. Wang J, Huang X, Wang L,Wang Q, Yan Y, Zhao N, Cui D, Feng Z (2017) Kinetics study on the leaching of rare earth and aluminum from FCC catalyst waste slag using hydrochloric acid. Hydrometallurgy 171(6):312–319. https://doi.org/10.1016/j.hydromet.2017.06.007

  21. Trinopiawan K, Mubarok MZ, Mellawati J, Ani BY (2016) Pelindian Logam Tanah Jarang dari Terak Timah dengan Asam Klorida Setelah Proses Fusi Alkali. Eksplorium. 37(1):41–50. https://doi.org/10.17146/eksplorium.2016.37.1.2719

    Article  Google Scholar 

  22. Biswas RK, Habib MA, Karmakar AK, Islam MR (2010) A novel method for processing of Bangladeshi zircon: Part I: Baking, and fusion with NaOH. Hydrometallurgy. 103(1–4):124–129. https://doi.org/10.1016/j.hydromet.2010.03.009

  23. Dai S, Seredin VV, Ward CR, Jiang J, Hower JC, Song X, Jiang Y, Wang X, Gornostaeva T, Li X, Liu H, Zhao L, Zhao C (2014) Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. Int J Coal Geol 121:79–97. https://doi.org/10.1016/j.coal.2013.11.004

  24. Tang M, Zhou C, Pan J, Zhang N, Liu C, Cao S, Hu T, Ji W (2019) Study on extraction of rare earth elements from coal fly ash through alkali fusion – Acid leaching. Miner Eng 136(7):36–42. https://doi.org/10.1016/j.mineng.2019.01.027

    Article  Google Scholar 

  25. Beyer GH, Spink DR, West JB, Wilhelm HA (1954) Caustic treatment of zircon sand, vol 8. Lowa State University, Washington

  26. Suli LM, Ibrahim WHW, Aziz BA, Deraman MR, Ismail NA (2017) A review of rare earth mineral processing technology. Chem Eng Res Bull 19(sep):20–35. https://doi.org/10.3329/cerb.v19i0.33773

  27. Yusoff MSM, Kaironie MT, Nursaidatul K, Khairulikram ZA, Aqilah SN (2002) An alternative alkaline fusion process for the production of heavy rare earth, thorium, uranium and phosphate from Malaysian xenotime. Recent Adv Environ Ecosyst Dev 1799:163–167 AIP Publishing

    Google Scholar 

  28. Trinopiawan K, Mubarok MZ, Mellawati J, Ani BY (2016) Rare earth elements leaching from tin slag using acid chloride after alkaline fusion process. Eksplorium. 37(1):41–50

  29. Da Silva RJF, Dutra AJB, Afonso JC (2012) Alkali fusion followed by a two-step leaching of a Brazilian zircon concentrate. Hydrometallurgy. 117–118:93–100. https://doi.org/10.1016/j.hydromet.2012.02.011

  30. Beyer GH, Spink DR, West JB, Wilhelm HA (1954) Caustic treatment of zircon sand, vol 8. Lowa State University, Washington

  31. Walawalkar M, Nichol CK, Azimi G (2016) Process investigation of the acid leaching of rare earth elements from phosphogypsum using HCl, HNO3, and H2SO4. Hydrometallurgy 166:195–204. https://doi.org/10.1016/j.hydromet.2016.06.008

  32. Panda R, Kumari A, Jha MK, Hait J, Kumar V, Rajesh Kumar J, Lee JY (2014) Leaching of rare earth metals (REMs) from Korean monazite concentrate. J Ind Eng Chem 20(4):2035–2042. https://doi.org/10.1016/j.jiec.2013.09.028

    Article  Google Scholar 

  33. Ochsenkühn-Petropoulou MT, Hatzilyberis KS, Mendrinos LN, Salmas CE (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41(23):5794–5801. https://doi.org/10.1021/ie011047b

    Article  Google Scholar 

  34. Havlík T (2008) Kinetics of heterogeneous reactions of leaching processes. Hydrometall. Princ. Appl., vol. 18. Woodhead Publishing, Cambridge, p 184–241

  35. Stopic S, Friedrich B (2016) Kinetics of yttrium dissolution from waste ceramic dust. Military Tech Courier 64(2):383–395. https://doi.org/10.5937/vojtehg64-8668

    Article  Google Scholar 

  36. Dupont D, Binnemans K (2015) Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chem 17(2):856–868. https://doi.org/10.1039/c4gc02107j

    Article  Google Scholar 

  37. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, Oregon

    Google Scholar 

  38. Liu X, Byrne RH (1997) Rare earth and yttrium phosphate solubilities in aqueous solution. Geochim Cosmochim Acta 61(8):1625–1633. https://doi.org/10.1016/S0016-7037(97)00037-9

    Article  Google Scholar 

  39. Lee J, Kim S, Kim B, Lee JC (2018) Effect of mechanical activation on the kinetics of copper leaching from copper sulfide (CuS). Metals 8(02):150. https://doi.org/10.3390/met8030150

    Article  Google Scholar 

  40. Huang Y, Dou Z, Zhang T-a, Liu J (2017) Leaching kinetics of rare earth elements and flouride from mixed rare earth concentrate after roasting with calcium hydroxide and sodium hydroxide. Hydrometallurgy 173(11):15–21. https://doi.org/10.1016/j.hydromet.2017.07.004

    Article  Google Scholar 

  41. Li M, Zhang X, Liu Z, Hu Y, Wang M, Liu J, Yang J (2013) Kinetics of leaching fluoride from mixed rare earth concentrate with hydrochloric acid and aluminum chloride. Hydrometallurgy 140:71–76. https://doi.org/10.1016/j.hydromet.2013.09.004

  42. Kim C-J, Yoon H-S, Chung KW, Lee JY, Kim S-D, Shin SM, Lee S-J, Joe A-R, Lee S-I, Yoo S-J, Kim S-H (2014) Leaching kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag. Hydrometallurgy 146:133–137. https://doi.org/10.1016/j.hydromet.2014.04.003

    Article  Google Scholar 

  43. Yoon H-s, Kim C-j, Chung KW, Lee J-y, Shin SM, Lee S-j, Joe A-r, Lee S-i, Yoo S-j (2014) Leaching kinetics of neodymium in sulfuric acid of rare earth elements ( REE ) slag concentrated by pyrometallurgy from magnetite ore. Korean J Chem Eng 31(10):1766–1772. https://doi.org/10.1007/s11814-014-0078-3

    Article  Google Scholar 

Download references

Funding

We appreciate the financial support from Universitas Gadjah Mada, Indonesia (RTA Program) and PSTA – BATAN, Indonesia for the use of the analytical instruments required to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agus Prasetya or Himawan Tri Bayu Murti Petrus.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prameswara, G., Trisnawati, I., Poernomo, H. et al. Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings. Mining, Metallurgy & Exploration 37, 1297–1305 (2020). https://doi.org/10.1007/s42461-020-00220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00220-x

Keywords

Navigation