Skip to main content
Log in

Numerical investigation of a non-Newtonian fluid squeezed between two parallel disks

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The transient, axisymmetric squeeze flow of the non-Newtonian shear thinning material between finite disks is studied numerically. The fluid between disks is assumed to follow the Carreau-Bird model. Two disks approach each other at a constant velocity while no-slip boundary condition is assumed. The time dependent simulation shows the effect of fluid nonlinearity, flow parameters and geometric aspect ratio on the flow dynamic and evolution of squeeze force. Also, some physical phenomena are shown and are explained at the edge of the disks and out of them. The conservation and momentum equations containing inertia effects are solved using moving mesh scheme and finite volume method. The SIMPLE algorithm is used to solve the pressure-velocity coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahamed, R., M.M. Ferdaus, and Y. Li, 2016, Advancement in energy harvesting magneto-rheological fluid damper: A review, Korea-Aust. Rheol. J.28, 355–379.

    Article  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids, Vol. 1, Wiley, New York.

    Google Scholar 

  • Debbaut, B., 2001, Non-isothermal and viscoelastic effects in the squeeze flow between infinite plates, J. Non-Newton. Fluid Mech.98, 15–31.

    Article  CAS  Google Scholar 

  • El Wahed, A.K., J.L. Sproston, R. Stanway, and E.W. Williams, 2003, An improved model of ER fluids in squeeze-flow through model updating of the estimated yield stress, J. Sound Vibr.268, 581–599.

    Article  Google Scholar 

  • Engmann, J., C. Servais, and A.S. Burbidge, 2005, Squeeze flow theory and applications to rheometry: A review, J. Non-Newton. Fluid Mech.132, 1–27.

    Article  CAS  Google Scholar 

  • Hoseinzadeh, M. and J. Rezaeepazhand, 2014, Vibration suppression of composite plates using smart electrorheological dampers, Int. J. Mech. Sci.84, 31–40.

    Article  Google Scholar 

  • Jackson, J.D., 1963, A study of squeezing flow, Appl. Sci. Res.11, 148–152.

    Article  Google Scholar 

  • Kuzma, D.C., E.R. Maki, and R.J. Donnelly, 1964, The magnetohydrodynamic squeeze film, J. Fluid Mech.19, 395–400.

    Article  Google Scholar 

  • Laun, H.M., M. Rady, and O. Hassager, 1999, Analytical solutions for squeeze flow with partial wall slip, J. Non-Newton. Fluid Mech.81, 1–15.

    Article  CAS  Google Scholar 

  • Leider, P.J. and R.B. Bird, 1974, Squeezing flow between parallel disks. I. Theoretical analysis, Ind. Eng. Chem. Fundam.13, 336–341.

    Article  CAS  Google Scholar 

  • Lin, J., M. Lin, T. Hung, and P. Wang, 2013, Effects of fluid inertia forces on the squeeze film characteristics of conical plates-ferromagnetic fluid model, Lubr. Sci.25, 429–439.

    Article  CAS  Google Scholar 

  • Macosko, C.W., 1994, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York.

    Google Scholar 

  • Masumi, Y. and A.H. Nikseresht, 2017, Comparison of numerical solution and semi-empirical formulas to predict the effects of important design parameters on porpoising region of a planing vessel, Appl. Ocean Res.68, 228–236.

    Article  Google Scholar 

  • Moss, E.A., A. Krassnokutski, B.W. Skews, and R.T. Paton, 2011, Highly transient squeeze-film flows, J. Fluid Mech.671, 384–398.

    Article  Google Scholar 

  • Munawar, S., A. Mehmood, and A. Ali, 2012, Three-dimensional squeezing flow in a rotating channel of lower stretching porous wall, Comput. Math. Appl.64, 1575–1586.

    Article  Google Scholar 

  • Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, CRC Press, New York.

    Google Scholar 

  • Phan-Thien, N., F. Sugeng, and R.I. Tanner, 1987, The squeeze-film flow of a viscoelastic fluid, J. Non-Newton. Fluid Mech.24, 97–119.

    Article  Google Scholar 

  • Pratt, T.J. and D.F. James, 1988, The viscous squeeze-film behaviour of shear-thinning fluids, J. Non-Newton. Fluid Mech.27, 27–46.

    Article  Google Scholar 

  • Řehoř, M. and V. Průša, 2016, Squeeze flow of a piezoviscous fluid, Appl. Math. Comput.274, 414–429.

    Google Scholar 

  • Sherwood, J.D., 2011, Squeeze flow of a power-law fluid between non-parallel plates, J. Non-Newton. Fluid Mech.166, 289–296.

    Article  CAS  Google Scholar 

  • Stefan, J., 1875, Versuche über die scheinbare Adhäsion, Ann. Phys.230, 316–318.

    Article  Google Scholar 

  • Tichy, J.A. and W.O. Winer, 1970, Inertial considerations in parallel circular squeeze film bearings, J. Lub. Tech.92, 588–592.

    Article  Google Scholar 

  • Wang, F., Q. Ma, W. Meng, and Z. Han, 2017, Experimental study on the heat transfer behavior and contact pressure at the casting-mold interface in squeeze casting of aluminum alloy, Int. J. Heat Mass Transf.112, 1032–1043.

    Article  CAS  Google Scholar 

  • Yang, S.P. and K.Q. Zhu, 2005, Note on a paper by Laun: The squeeze force for a power law fluid, J. Non-Newton. Fluid Mech.132, 84–85.

    Article  CAS  Google Scholar 

  • Zapoměl, J., P. Ferfecki, and J. Kozánek, 2017, Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors, Int. J. Mech. Sci.127, 191–197.

    Article  Google Scholar 

  • Zueco, J. and O.A. Bég, 2010, Network numerical analysis of hydromagnetic squeeze film flow dynamics between two parallel rotating disks with induced magnetic field effects, Tribol. Int.43, 532–543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nariman Ashrafi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafahi, M., Ashrafi, N. Numerical investigation of a non-Newtonian fluid squeezed between two parallel disks. Korea-Aust. Rheol. J. 32, 89–97 (2020). https://doi.org/10.1007/s13367-020-0002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-020-0002-9

Keywords

Navigation