Skip to main content

Advertisement

Log in

Physiological Advantage of Phenotypic Heterogeneity in a Quorum-Sensing Population

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Quorum sensing, or the ability of a population, to respond to an environmental cue in a coordinated manner has made fundamental changes about how we understand bacterial physiology. In this framework, a population, once it exceeds a certain threshold in size, and in the appropriate environmental conditions, coordinates expression of genes across individual members of the population in a fashion so that all individual members are in sync. This ability allows the population to accomplish tasks (like searching for nutrients in the surrounding environment) that would be difficult to perform, if undertaken by a single cell. In this context, quorum sensing is a homogenizing force in a population. However, in recent years, a number of studies have reported that quorum sensing can also lead to a heterogeneous response in terms of gene expression across the population. A discussion of the strategies which explain this heterogeneity in the population at a single-cell resolution is the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Similar content being viewed by others

References

  1. Roder HL, Olsen NMC, Whiteley M, Burmolle M (2019) Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environ Microbiol 22:5

    Google Scholar 

  2. Shang L et al (2018) Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci Rep 8:16061

    Google Scholar 

  3. Lohse MB, Gulati M, Johnson AD, Nobile CJ (2018) Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16:19–31

    CAS  Google Scholar 

  4. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004

    CAS  Google Scholar 

  5. Popat R et al (2012) Quorum-sensing and cheating in bacterial biofilms. Proc Biol Sci 279:4765–4771

    CAS  Google Scholar 

  6. Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol (NY) 9:560–569

    Google Scholar 

  7. Claessen D, Rozen DE, Kuipers OP, Sogaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115–124

    CAS  Google Scholar 

  8. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3:383–396

    CAS  Google Scholar 

  9. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  Google Scholar 

  10. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100(2):14549–14554

    CAS  Google Scholar 

  11. Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338:264–266

    CAS  Google Scholar 

  12. Schuster M, Sexton DJ, Hense BA (2017) Why quorum sensing controls private goods. Front Microbiol 8:885

    Google Scholar 

  13. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  Google Scholar 

  14. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275

    CAS  Google Scholar 

  15. Wei SL, Young RE (1989) Development of symbiotic bacterial bioluminescence in a nearshore cephalopod Euprymna scolopes. Marine Biol 103:541–546

    Google Scholar 

  16. McFall-Ngai MJ (1990) Crypsis in the pelagic environment. Am Zool 30:175–188

    Google Scholar 

  17. Lee KH, Ruby EG (1994) Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Environ Microbiol 60:1565–1571

    CAS  Google Scholar 

  18. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    CAS  Google Scholar 

  19. Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17:371–382

    CAS  Google Scholar 

  20. Rai N et al (2012) Prediction by promoter logic in bacterial quorum sensing. PLoS Comput Biol 8:e1002361

    CAS  Google Scholar 

  21. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178:2897–2901

    CAS  Google Scholar 

  22. Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109:1101–1105

    CAS  Google Scholar 

  23. Eberhard A et al (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449

    CAS  Google Scholar 

  24. Friedrich WF, Greenberg EP (1983) Glucose repression of luminescence and luciferase in Vibrio fischeri. Arch Microbiol 134:87–91

    CAS  Google Scholar 

  25. Stevens AM, Greenberg EP (1997) Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J Bacteriol 179:557–562

    CAS  Google Scholar 

  26. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    CAS  Google Scholar 

  27. Sitnikov DM, Schineller JB, Baldwin TO (1995) Transcriptional regulation of bioluminesence genes from Vibrio fischeri. Mol Microbiol 17:801–812

    CAS  Google Scholar 

  28. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  Google Scholar 

  29. Shadel GS, Baldwin TO (1992) Positive autoregulation of the Vibrio fischeri luxR gene. LuxR and autoinducer activate cAMP-catabolite gene activator protein complex-independent and -dependent luxR transcription. J Biol Chem 267:7696–7702

    CAS  Google Scholar 

  30. Dunlap PV, Kuo A (1992) Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein. J Bacteriol 174:2440–2448

    CAS  Google Scholar 

  31. Shadel GS, Baldwin TO (1991) The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. J Bacteriol 173:568–574

    CAS  Google Scholar 

  32. Banerjee G, Ray AK (2017) Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiol Immunol Hung 64:439–453

    CAS  Google Scholar 

  33. Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    CAS  Google Scholar 

  34. Pradhan BB, Chatterjee S (2014) Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing. Mol Microbiol 92:557–569

    CAS  Google Scholar 

  35. Samal B, Chatterjee S (2019) New insight into bacterial social communication in natural host: evidence for interplay of heterogeneous and unison quorum response. PLoS Genet 15:e1008395

    CAS  Google Scholar 

  36. Perez PD, Hagen SJ (2010) Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri. PLoS ONE 5:e15473

    Google Scholar 

  37. Patzelt D et al (2013) You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae. ISME J 7:2274–2286

    CAS  Google Scholar 

  38. Carcamo-Oyarce G, Lumjiaktase P, Kummerli R, Eberl L (2015) Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nat Commun 6:5945

    CAS  Google Scholar 

  39. Chu EK, Groisman A, Levchenko A (2019) Environmental sensing in dynamic quorum responses. BioRxiv 2019:745091

    Google Scholar 

  40. Haseltine EL, Arnold FH (2008) Implications of rewiring bacterial quorum sensing. Appl Environ Microbiol 74:437–445

    CAS  Google Scholar 

  41. Williams JW, Cui X, Levchenko A, Stevens AM (2008) Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol Syst Biol 4:234

    Google Scholar 

  42. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909

    CAS  Google Scholar 

  43. Lee B et al (2005) Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255

    CAS  Google Scholar 

  44. Ackermann M et al (2008) Self-destructive cooperation mediated by phenotypic noise. Nature 454:987–990

    CAS  Google Scholar 

  45. Grote J, Krysciak D, Streit WR (2015) Phenotypic heterogeneity, a phenomenon that may explain why quorum sensing does not always result in truly homogenous cell behavior. Appl Environ Microbiol 81:5280–5289

    CAS  Google Scholar 

  46. Weigel WA, Dersch P (2018) Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect 20:570–577

    CAS  Google Scholar 

  47. Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3:618–624

    CAS  Google Scholar 

  48. Veening JW et al (2008) Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4:184

    Google Scholar 

  49. Anetzberger C, Pirch T, Jung K (2009) Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol Microbiol 73:267–277

    CAS  Google Scholar 

  50. Hutchison EA, Miller DA, Angert ER (2014) Sporulation in bacteria: beyond the standard model. Microbiol Spectr 2014:2

    Google Scholar 

  51. Dubnau D (1991) Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424

    CAS  Google Scholar 

  52. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372

    CAS  Google Scholar 

  53. Boedicker JQ, Vincent ME, Ismagilov RF (2009) Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl 48:5908–5911

    CAS  Google Scholar 

  54. Shanker E, Federle MJ (2017) Quorum sensing regulation of competence and Bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 2017:8

    Google Scholar 

  55. Hagen SJ, Son M (2017) Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway. Phys Biol 14:015001

    Google Scholar 

  56. Krysciak D et al (2014) RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant. Appl Environ Microbiol 80:5655–5671

    Google Scholar 

  57. Grote J et al (2014) Evidence of autoinducer-dependent and -independent heterogeneous gene expression in Sinorhizobium fredii NGR234. Appl Environ Microbiol 80:5572–5582

    Google Scholar 

  58. Torres-Cerna CE, Morales JA, Hernandez-Vargas EA (2019) Modeling quorum sensing dynamics and interference on Escherichia coli. Front Microbiol 10:1835

    Google Scholar 

  59. Ueda H, Stephens K, Trivisa K, Bentley WE (2019) bacteria floc, but do they flock? Insights from population interaction models of quorum sensing. MBio 2019:10

    Google Scholar 

  60. Gilbert D, Heiner M, Ghanbar L, Chodak J (2019) Spatial quorum sensing modelling using coloured hybrid Petri nets and simulative model checking. BMC Bioinform 20:173

    Google Scholar 

  61. Zhao K et al (2019) Behavioral heterogeneity in quorum sensing can stabilize social cooperation in microbial populations. BMC Biol 17:20

    Google Scholar 

  62. Perez-Velazquez J, Golgeli M, Garcia-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78:1585–1639

    CAS  Google Scholar 

  63. Mattiuzzo M et al (2011) The plant pathogen Pseudomonas fuscovaginae contains two conserved quorum sensing systems involved in virulence and negatively regulated by RsaL and the novel regulator RsaM. Environ Microbiol 13:145–162

    CAS  Google Scholar 

  64. Prajapat MK, Saini S (2018) Logic of two antagonizing intra-species quorum sensing systems in bacteria. Biosystems 165:88–98

    CAS  Google Scholar 

  65. Beaumont HJ, Gallie J, Kost C, Ferguson GC, Rainey PB (2009) Experimental evolution of bet hedging. Nature 462:90–93

    CAS  Google Scholar 

  66. Van den Bergh B, Michiels JE, Michiels J (2016) Experimental evolution of Escherichia coli persister levels using cyclic antibiotic treatments. Methods Mol Biol 1333:131–143

    Google Scholar 

  67. Tawfik DS (2010) Messy biology and the origins of evolutionary innovations. Nat Chem Biol 6:692–696

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supreet Saini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshkannan, E., Saini, S. Physiological Advantage of Phenotypic Heterogeneity in a Quorum-Sensing Population. J Indian Inst Sci 100, 485–496 (2020). https://doi.org/10.1007/s41745-020-00175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00175-4

Navigation