Skip to main content
Log in

Fabrication and photoelectrocatalytic performance of C3N4-modified Ti/PbO2 anode with surface hydrophobicity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Reasonable hydrophobic anode is deemed to be a promising electrode for photoelectrocatalytic degradation of wastewater. In this study, the C3N4-modified Ti/PbO2 electrode with tunable hydrophobic characteristics is fabricated by a facile electrodeposition process. It is found that the introduction of C3N4 into the PbO2 films changed the morphology, surface hydrophilicity, and hydrophobicity of the electrode, which promotes the photoelectrochemical active areas, generating efficiency of hydroxyl radicals. In addition, introducing C3N4 into PbO2 coating can enhance oxygen evolution potential and carrier density of PbO2. Photoelectrocatalytic degradation experiments show that the addition of C3N4 can further improve the catalytic performance of PbO2 and there exists a significant photoelectric synergism in photoelectrocatalytic process. These results demonstrate that the combination of reasonable surface hydrophobic characteristics and photoelectrocatalytic is a prospective approach for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Körbahti BK, Tanyolaç A (2008) Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology. J Hazard Mater 151(2-3):422–431

    Article  PubMed  CAS  Google Scholar 

  2. Lin SH, Peng CF (1994) Treatment of textile wastewater by electrochemical method. Water Res 28(2):277–282

    Article  CAS  Google Scholar 

  3. Solozhenko EG, Soboleva NM, Goncharuk VV (1995) Decolourization of azodye solutions by Fenton's oxidation. Water Res 29(9):2206–2210

    Article  CAS  Google Scholar 

  4. Correia VM, Stephenson T, Judd SJ (1994) Characterisation of textile wastewaters-a review. Environ Technol 15(10):917–929

    Article  CAS  Google Scholar 

  5. Paprowicz J, Słodczyk S (1988) Application of biologically activated sorptive columns for textile waste water treatment. Environ Technol 9:271–280

    CAS  Google Scholar 

  6. Lim SH, Gürsoy NÇ, Hauser P, Hinks D (2004) Performance of a new cationic bleach activator on a hydrogen peroxide bleaching system. Color Technol 120(3):114–118

    Article  CAS  Google Scholar 

  7. Chun H, Yizhong W (1999) Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater. Chemosphere 39(12):2107–2115

    Article  Google Scholar 

  8. Chakrabarti S, Dutta BK (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater 112(3):269–278

    Article  CAS  PubMed  Google Scholar 

  9. Mohan N, Balasubramanian N, Basha CA (2007) Electrochemical oxidation of textile wastewater and its reuse. J Hazard Mater 147(1-2):644–651

    Article  CAS  PubMed  Google Scholar 

  10. Esquivel K, Arriaga LG, Rodriguez FJ, Martínez L, Godínez LA (2009) Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Res 43(14):3593–3603

    Article  CAS  PubMed  Google Scholar 

  11. Paschoal FM, Anderson MA, Zanoni MVB (2009) The photoelectrocatalytic oxidative treatment of textile wastewater containing disperse dyes. Desalination 249(3):1350–1355

    Article  CAS  Google Scholar 

  12. Luo J, Hepel M (2001) Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode. Electrochim Acta 46(19):2913–2922

    Article  CAS  Google Scholar 

  13. Li P, Zhao G, Li M, Cao T, Cui X, Li D (2012) Design and high efficient photoelectric-synergistic catalytic oxidation activity of 2D macroporous SNO2/1D TiO2 nanotubes. Appl Catal B 111:578–585

    Google Scholar 

  14. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19(29):5089–5121

    Article  CAS  Google Scholar 

  15. Wu Z, Li W, Xia Y, Webley P, Zhao D (2012) Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. J Mater Chem 22(18):8835–8845

    Article  CAS  Google Scholar 

  16. Comninellis C, Pulgarin C (1991) Anodic oxidation of phenol for waste water treatment. J Appl Electrochem 21(8):703–708

    Article  CAS  Google Scholar 

  17. Zhu X, Ni J, Wei J, Xing X, Li H (2011) Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. J Hazard Mater 189(1-2):127–133

    Article  CAS  PubMed  Google Scholar 

  18. Tan C, Xiang B, Li Y, Fang J, Huang M (2011) Preparation and characteristics of a nano-PbO2 anode for organic wastewater treatment. Chem Eng J 166(1):15–21

    Article  CAS  Google Scholar 

  19. Samet Y, Elaoud SC, Ammar S, Abdelhedi R (2006) Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes. J Hazard Mater 138(3):614–619

    Article  CAS  PubMed  Google Scholar 

  20. Duan X, Ma F, Yuan Z, Chang L, Jin X (2013) Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J Taiwan Inst Chem Eng 44(1):95–102

    Article  CAS  Google Scholar 

  21. Velichenko AB, Amadelli R, Benedetti A, Girenko DV, Kovalyov SV, Danilov FI (2002) Electrosynthesis and physicochemical properties of PbO2 films. J Electrochem Soc 149(9):C445–C449

    Article  CAS  Google Scholar 

  22. Zhou M, Dai Q, Lei L, Ma CA, Wang D (2005) Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism. Environ Sci Technol 39(1):363–370

    Article  CAS  PubMed  Google Scholar 

  23. Duan X, Xu F, Wang Y, Chen Y, Chang L (2018) Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution. Electrochim Acta 282:662–671

    Article  CAS  Google Scholar 

  24. Lyu J, Han H, Wu Q, Ma H, Ma C, Dong X, Fu Y (2019) Enhancement of the electrocatalytic oxidation of dyeing wastewater (reactive brilliant blue KN-R) over the Ce-modified Ti-PbO2 electrode with surface hydrophobicity. J Solid State Electrochem 23(3):847–859

    Article  CAS  Google Scholar 

  25. Zhou K, Tian Y, Ma H, Ma C, Fu Y, Dong X, Zhang X (2018) Photoelectrocatalytic performance of conductive carbon black-modified Ti/F-PbO2 anode for degradation of dye wastewater (reactive brilliant blue KN-R). J Solid State Electrochem 22(4):1131–1141

    Article  CAS  Google Scholar 

  26. Wang X, Wu Q, Ma H, Ma C, Yu Z, Fu Y, Dong X (2019) Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater. Sol Energy Mater Sol Cells 191:381–388

    Article  CAS  Google Scholar 

  27. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2(8):1596–1606

    Article  CAS  Google Scholar 

  29. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51(1):68–89

    Article  CAS  Google Scholar 

  30. Bu Y, Chen Z, Yu J, Li W (2013) A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion. Electrochim Acta 88:294–300

    Article  CAS  Google Scholar 

  31. Ma S, Zhan S, Jia Y, Shi Q, Zhou Q (2016) Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light. Appl Catal B 186:77–87

    Article  CAS  Google Scholar 

  32. Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5(12):2101–2107

    Article  CAS  PubMed  Google Scholar 

  33. Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W (2016) In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Appl Catal B 180:663–673

    Article  CAS  Google Scholar 

  34. Liu L, Qi Y, Lu J, Lin S, An W, Liang Y, Cui W (2016) A stable Ag3PO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation. Appl Catal B 183:133–141

    Article  CAS  Google Scholar 

  35. Liu H, Fu M, Li H (2015) Preparation of g-C3N4 and photocatalytic performance under visible light irradiation. Funct Mater 22:22022–22026

    Google Scholar 

  36. Wang Z, Xu M, Wang F, Liang X, Wei Y, Hu Y, Zhu CG, Fang W (2017) Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO modified Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater. Electrochim Acta 247:535–547

    Article  CAS  Google Scholar 

  37. Hu X, Yu Y, Yang L (2015) Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution. J Solid State Electrochem 19(6):1599–1609

    Article  CAS  Google Scholar 

  38. YANG WH, YANG WT, LIN XY (2012) Preparation and characterization of a novel Bi-doped PbO2 electrode. Acta Phys -Chim Sin 28:831–836

    Article  CAS  Google Scholar 

  39. Awad HS, Galwa NA (2005) Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere 61(9):1327–1335

    Article  CAS  PubMed  Google Scholar 

  40. Li YA, Zhang ZB, Xie SS, Yang GZ (1995) Stoichiometric growth of polycrystalline C3N4 thin films. Chem Phys Lett 247(3):253–256

    Article  CAS  Google Scholar 

  41. Li Y, Zhao C (2017) Enhancing water oxidation catalysis on a synergistic phosphorylated NiFe hydroxide by adjusting catalyst wettability. ACS Catal 7(4):2535–2541

    Article  CAS  Google Scholar 

  42. Lei Y, Zhao G, Zhang Y, Liu M, Liu L, Lv B, Gao J (2010) Highly efficient and mild electrochemical incineration: mechanism and kinetic process of refractory aromatic hydrocarbon pollutants on superhydrophobic PbO2 anode. Environ Sci Technol 44(20):7921–7927

    Article  CAS  PubMed  Google Scholar 

  43. Chen X, Wang D, Wang Z, Zhou P, Wu Z, Jiang F (2014) Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction. Chem Commun 50(79):11683–11685

    Article  CAS  Google Scholar 

  44. Montilla F, Morallón E, De Battisti A, Vázquez JL (2004) Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrochemical characterization. J Phys Chem B 108(16):5036–5043

    Article  CAS  Google Scholar 

  45. Zhang L, Xu L, He J, Zhang J (2014) Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim Acta 117:192–201

    Article  CAS  Google Scholar 

  46. Hao X, Dan S, Qian Z, Honghui Y, Yan W (2014) Preparation and characterization of PbO2 electrodes from electro-deposition solutions with different copper concentration. RSC Adv 4(48):25011–25017

    Article  CAS  Google Scholar 

  47. Bessegato GG, Guaraldo TT, de Brito JF, Brugnera F, Zanoni MV (2015) Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6(5):415–441

    Article  CAS  Google Scholar 

  48. Lyu J, Sun G, Zhu L, Ma H, Ma C, Dong X, Fu Y (2019) Fabrication of Ti/black TiO2-PbO2 micro/nanostructures with tunable hydrophobic/hydrophilic characteristics and their photoelectrocatalytic performance. J Solid State Electrochem 24(2):375–387. https://doi.org/10.1007/s10008-019-04433-z

    Article  CAS  Google Scholar 

  49. Kashyout AB, Soliman M, Fathy M (2010) Effect of preparation parameters on the properties of TiO2 nanoparticles for dye sensitized solar cells. Renew Energy 35(12):2914–2920

    Article  CAS  Google Scholar 

  50. Afify HH, Battisha IK (2000) Oxygen interaction with CdS based gas sensors by varying different preparation parameters. J Mater Sci Mater Electron 11:373–377

    Article  CAS  Google Scholar 

  51. Chen JL, Wang JY, Wu CC, Chiang KY (2011) Electrocatalytic degradation of 2, 4-dichlorophenol by granular graphite electrodes. Colloids Surf A Physicochem Eng Asp 379(1-3):163–168

    Article  CAS  Google Scholar 

  52. Wu Z, Zhou M, Wang D (2002) Synergetic effects of anodic–cathodic electrocatalysis for phenol degradation in the presence of iron (II). Chemosphere 48(10):1089–1096

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21875026, 21878031) and the Liaoning Revitalization Talents Program (XLYC1802124). The project is also sponsored by Liaoning BaiQianWan Talents Program, the scientific research fund of the educational department of Liaoning province (J2019013). This work was also supported by Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Project number: 2019JH3/30100034; Contract number: 2019010278-JH3/301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchao Ma or Yinghuan Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lyu, J., Zhou, K. et al. Fabrication and photoelectrocatalytic performance of C3N4-modified Ti/PbO2 anode with surface hydrophobicity. J Solid State Electrochem 24, 1577–1585 (2020). https://doi.org/10.1007/s10008-020-04657-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04657-4

Keywords

Navigation