Skip to main content

Advertisement

Log in

Fabrication of 1D/2D p-g-C3N4@RGO heterostructures with superior visible-light photoelectrochemical cathodic protection performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel photoelectrode system based on one-dimensional g-C3N4 porous nanofibers (1D-p-g-C3N4) heterostructured with 2D-RGO was fabricated by hydrogen bonding self-assembly technology in combination with heat treatment and electrodeposition process. Ascribed to the one-dimensional porous morphology of g-C3N4 and its heterojunction with RGO, the separation efficiency of the photoinduced electrons and holes was dramatically enhanced, leading to its superior PEC cathodic protection performance for 304 stainless steel. Under visible light illumination, the 1D/2D p-g-C3N4@RGO photoelectrode exhibited a photoinduced current density of 10.1 μA cm−2 and a photoinduced polarized potential of − 480 mV, which is 6 and 2.5 times that of g-C3N4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu X, Jiang SJ, Song SQ, Sun CZ (2018) Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+. Appl Surf Sci 430:371–379

    Article  CAS  Google Scholar 

  2. Liu W, Cao LL, Cheng WR, Cao YJ, Liu XK, Zhang W, Mou XL, Jin LL, Zhen XS, Chen W, Liu QH, Yao T, Wei SQ (2017) Single-site active-cobalt based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew Chem Int Ed 56(32):9312–9317

    Article  CAS  Google Scholar 

  3. Gao GP, Jiao Y, Waclawik ER, Du A (2016) Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc A 138(19):6292–6297

    Article  CAS  Google Scholar 

  4. Wang MQ, Yang WH, Wang HH, Chen C, Zhou ZY, Sun SG (2014) Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Cata 4(11):3928–3936

    Article  CAS  Google Scholar 

  5. Bu YY, Chen ZY, Yu JQ, Li WB (2013) A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion. Electrochim Acta 88:294–300

    Article  CAS  Google Scholar 

  6. Bu YY, Chen ZY (2014) Highly efficient photoelectrochemical anticorrosion performance of C3N4@ZnO composite with quasi-shell-core structure on 304 stainless steel. RSC Adv 4(85):45397–45406

    Article  CAS  Google Scholar 

  7. Sun MM, Chen ZY, Bu YY (2015) Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light. J Alloy Compd 618:734–741

    Article  CAS  Google Scholar 

  8. Jing JP, Sun MM, Chen ZY, Li JR, Xu FL, Xu LK (2017) Enhanced photoelectrochemical cathodic protection performance of the secondary reduced graphene oxide modified graphitic carbon nitride. J Electrochem Soc 164:822–830

    Article  CAS  Google Scholar 

  9. Zhou DF, Qiu CQ (2019) Study on the effect of Co doping concentration on optical properties of g-C3N4. Chem Phys Lett 728:70–73

    Article  CAS  Google Scholar 

  10. Zhang QJ, Jing JP, Chen ZY, Sun MM, Li JR, Li Y, Xu LK (2019) Enhanced photoelectrochemical cathodic protection performance of g-C3N4 caused by the co-modifcation with N defects and C deposition. J Mater Sci Mater El 30(16):15267–15276

    Article  CAS  Google Scholar 

  11. Tian N, Zhang Y, Li X, Xiao K, Du X, Dong F, Waterhouse GIN, Zhang TR, Huang HW (2017) Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38:72–81

    Article  CAS  Google Scholar 

  12. Yao WF, Deng C, Tang L, Zeng G, Zhou Y, Xie X, Wang JJ, Wang Y, Wang JJ (2017) Synthesis of Pd/Au bimetallic nanoparticle-loaded ultrathin graphitic carbon nitride nanosheets for highly efficient catalytic reduction of p-nitrophenol. J Colloid Interface Sci 490:834–843

    Article  CAS  Google Scholar 

  13. Mo Z, Xu H, Chen ZG, She XJ, Song YH, Wu JJ, Yan PC, Xu L, Lei YC, Yuan SQ, Li HM (2018) Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl Cata B Environ 225:154–161

    Article  CAS  Google Scholar 

  14. Liu B, Ye LQ, Wang R, Yang JF, Zhang YX, Guan R, Tian LH, Chen XB (2018) Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl Mater Interfaces 10(4):4001–4009

    Article  CAS  PubMed  Google Scholar 

  15. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  16. Ouyang Y, Geuli O, Hao Q. L, Mandler D (2020) Controllable assembly of hybrid electrodes by electrophoretic deposition for high-performance battery–supercapacitor hybrid devices. ACS Appl Energy Mater 3(2):1784-1793

  17. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Colloid Interface Sci 97(1-3):279–317

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Ma R, Du A, Zhang XR, Fan YZ, Zhao X, Zhang SH, Cao XM (2019) Investigation on structure and corrosion resistance of complex inorganic passive film based on graphene oxide. Corros Sci 150:64–75

    Article  CAS  Google Scholar 

  19. Dai K, Lu LH, Liu Q, Zhu GP, Wei XQ, Bai J, Xuan LL, Wang H (2014) Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans 43(17):6295–6299

    Article  CAS  PubMed  Google Scholar 

  20. Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao SZ (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139(9):3336–3339

    Article  CAS  PubMed  Google Scholar 

  21. Meng NN, Ren J, Liu Y, Huang Y, Petit T, Zhang B (2018) Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy Environ Sci 11(3):566–571

    Article  CAS  Google Scholar 

  22. Hu SZ, Zhang WD, Bai J, Lu G, Zhang L, Wu G (2016) Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv 6(31):5695–25702

    Article  CAS  Google Scholar 

  23. Shi L, Wang FX, Liang L, Chen KL, Liu MS, Zhu RS, Sun JM (2017) In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catal Commun 89:129–132

    Article  CAS  Google Scholar 

  24. Shen JS, Cai QG, Jiang YB (2010) Anion-triggered melamine based self-assembly and hydrogelw. Chem Commun 4(36):6786–6788

    Article  CAS  Google Scholar 

  25. Lai SK, Xie C, Teng KS, Li Y, Tan F, Su SP (2016) Polymeric carbon nitride nanosheets/graphene hybrid phototransistors with high responsivity. Adv Opt Mater 4(4):555–561

    Article  CAS  Google Scholar 

  26. Gao DQ, Xu Q, Zhang J, Yang ZL, Si MS, Yan ZJ, Xue DS (2014) Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 6(5):2577–2581

    Article  CAS  PubMed  Google Scholar 

  27. Luo L, Zhang AF, Janik MK, Li KY, Song CH, Guo XW (2017) Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation. Appl Surf Sci 396:78–84

    Article  CAS  Google Scholar 

  28. Liu JY, Xu H, Xu YG, Song YH, Lian JB, Zhao Y, Wang L, Huang LY, Ji HY, Li HM (2017) Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. Appl Catal B Environ 207:429–437

    Article  CAS  Google Scholar 

  29. Luo DC, Zhang GX, Liu JF, Sun XM (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115(23):11327–11335

    Article  CAS  Google Scholar 

  30. Wang Q, Wang W, Zhong LL, Liu DM, Cao XZ, Cui FY (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B 220:290–302

    Article  CAS  Google Scholar 

  31. Wen JQ, Xie J, Yang ZH, Shen RC, Li HY, Luo XY, Chen XB, Li X (2017) Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons. ACS Sustain Chem Eng 5(3):2224–2236

    Article  CAS  Google Scholar 

  32. Zhao ZF, Kou TY, Zhang LX, Zhai SC, Wang W, Wang Y (2018) Dealloying induced N-doping in spindle-like porous rutile TiO2 for enhanced visible light photocatalytic activity. Corros Sci 137:204–211

    Article  CAS  Google Scholar 

  33. Zhang J, Wu M, He BB, Wang R, Wang HW, Gong YS (2019) Facile synthesis of rod-like g-C3N4 by decorating Mo2C co-catalyst for enhanced visible-light photocatalytic activity. Appl Surf Sci 470:565–572

    Article  CAS  Google Scholar 

  34. Li YB, Zhang HM, Liu P, Wang D, Li Y, Zhao HJ (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9(19):3336–3344

    CAS  PubMed  Google Scholar 

  35. van Vugt LK, Veen SJ, Bakkers EPAM (2005) Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation. J Am Chem Soc 127(35):12357–12362

    Article  PubMed  CAS  Google Scholar 

  36. Susanginee N, Lagnamayee M, Kulamani P (2015) Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J Mater Chem A 3(36):18622–18635

    Article  Google Scholar 

  37. Liao GZ, Chen S, Quan X, Yu HT, Zhao HM (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22(6):2721–2726

    Article  CAS  Google Scholar 

  38. Wu LP, Li J, Zhang SH, Long LZ, Li XJ, Cen CP (2013) Effect of ordered TiO2 Nanotube array substrate on photocatalytic performance of CdS-sensitized ZnO nanorod arrays. J Phys Chem C 117(44):22591–22597

    Article  CAS  Google Scholar 

  39. Li H, Wang XT, Zhang L, Hou BR (2015) Preparation and photocathodic protectionperformance of CdSe/reduced graphene oxide/TiO2 composite. Corros Sci 94:342–349

    Article  CAS  Google Scholar 

  40. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399

    Article  CAS  PubMed  Google Scholar 

  41. Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott-Schottky equation. J Chem Educ 84(4):685–688

    Article  CAS  Google Scholar 

  42. Bu YY, Chen ZY (2014) Effect of hydrogen treatment on the photoelectrochemical properties ofquantum dots sensitized ZnO nanorod array. J Power Sources 272:647–653

    Article  CAS  Google Scholar 

  43. Zhang JH, Chen XF, Takanabe K, Maeda K, Domen K, Epping JD, Fu XZ, Antonietti M, Wang XC (2010) Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew Chem Int Ed 49(2):441–444

    Article  CAS  Google Scholar 

  44. Wu KF, Zhu HM, Liu Z, Córdoba WR, Lian TQ (2012) Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS-Pt nanorod heterostructures. J Am Chem Soc 134(25):10337–10340

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (21404066, 51801110) and the Natural Science Foundation of Shandong Province (ZR2016DM21, ZR2017BD038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuwei Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, B., Yang, X., Li, X. et al. Fabrication of 1D/2D p-g-C3N4@RGO heterostructures with superior visible-light photoelectrochemical cathodic protection performance. J Solid State Electrochem 24, 1669–1678 (2020). https://doi.org/10.1007/s10008-020-04660-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04660-9

Keywords

Navigation