Skip to main content
Log in

Sub-Wavelength THz Imaging of the Domains in Periodically Poled Crystals Through Optical Rectification

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

By focusing a femtosecond laser beam onto the lateral face of a periodically poled KTP crystal, we generate a THz pulse through optical rectification of the laser pulse. The THz signal is recorded by means of a common THz time-domain technique, which allows us to obtain both the magnitude and sign of the THz waveform, and then the magnitude and phase of its spectral components thanks to a numerical Fourier-transform. By moving the laser beam along the crystal, we record a THz signal that renders for the alternative orientation of the crystal domains, with a lateral resolution as good as 10 μm, whatever the THz wavelength. This demonstrates the potential of the Optical Rectification TeraHertz Imaging (ORTI) technique to produce sub-wavelength THz images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. U. S. de Cumis, J. H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M. S. Vitiello, P. A. Benedetti, H. E. Beere, and D. A. Ritchie, Terahertz confocal microscopy with a quantum cascade laser source, Opt. Exp. 20, 21924 (2012).

    Article  Google Scholar 

  2. N. Oda, T. Ishi, T. Morimoto, T. Sudou, H. Tabata, S. Kawabe, K. Fukuda, A. W. M. Lee, and Q. Hu, Real-Time Transmission-Type Terahertz Microscope with Palm Size Terahertz Camera and Compact Quantum Cascade Laser, Proceedings of SPIE; Terahertz Emitters, Receivers, and Applications III, vol. 8496, p. 84960Q (2012).

  3. A. J. Macfaden, J. L. Reno, I. Brener, and O. Mitrofanov, 3 μm aperture probes for near-field terahertz transmission microscopy, Appl. Phys. Lett. 104, 011110 (2014).

    Article  Google Scholar 

  4. H. G. Von Ribbeck, M. Brehm, D. W. Van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, Spectroscopic THz near-field microscope, Opt. Express 16, 3430 (2008).

    Article  Google Scholar 

  5. C. Maissen, S. Chen, E. Nikulina, A. Govyadinov, and R. Hillenbrand, Probes for Ultrasensitive THz Nanoscopy, ACS Photonics 6, 1279 (2019).

    Article  Google Scholar 

  6. Y. Kajihara, K. Kosaka, and S. Komiyama, A sensitive near-field microscope for thermal radiation, Review of Scientific Instruments 81, 033706 (2010).

    Article  Google Scholar 

  7. S. Komiyama, Perspective: Nanoscopy of charge kinetics via terahertz fluctuation, J. Appl. Phys. 125, 010901 (2019).

    Article  Google Scholar 

  8. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, A single-photon detector in the far-infrared range, Nature 403, 405 (2000).

    Article  Google Scholar 

  9. M. Eisele, A. Huber, and T. Gokus, THz Near-Field Nanoscopy at 25 Nanometer Spatial Resolution, in CLEO: Science and Innovations, Optical Society of America, pp. SW3D-2 (2018).

  10. R. Lecaque, S. Grésillon, and C. Boccara, THz emission Microscopy with sub-wavelength broadband source, Opt. Exp. 16, 4731 (2008).

    Article  Google Scholar 

  11. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, Real-time terahertz near-field microscope, Opt. Exp. 19, 8277 (2011).

    Article  Google Scholar 

  12. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits, Opt. Lett. 28, 2058 (2003).

    Article  Google Scholar 

  13. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, Imaging of large-scale integrated circuits using laser terahertz emission microscopy, Opt. Exp. 13, 115 (2005).

    Article  Google Scholar 

  14. M. Yamashita, C. Otani, T. Matsumoto, Y. Midoh, K. Miura, K. Nakamae, K. Nikawa, S. Kim, H. Murakami and M. Tonouchi, THz emission characteristics from p/n junctions with metal lines under non-bias conditions for LSI failure analysis, Opt. Exp. 19, 10864 (2011).

    Article  Google Scholar 

  15. H. Nakanishi, S. Fujiwara, K. Takayama, I. Kawayama, H. Murakami, and M. Tonouchi, Imaging of a Polycrystalline Silicon Solar Cell Using a Laser Terahertz Emission Microscope, Appl. Phys. Exp. 5, 112301 (2012).

    Article  Google Scholar 

  16. T. Kuwana, M. Ogawa, K. Sakai, T. Kiwa, and K. Tsukada, Label-free detection of low-molecular-weight samples using a terahertz chemical microscope, Appl. Phys. Exp. 9, 042401 (2016).

    Article  Google Scholar 

  17. M. Sotome, N. Kida, S. Horiuchi, and H. Okamoto, Visualization of ferroelectric domains in a hydrogen-bonded molecular crystal using emission of terahertz radiation. Appl. Phys. Lett. 105, 041101 (2014).

    Article  Google Scholar 

  18. Y. Kinoshita, N. Kida, M. Sotome, R. Takeda, N. Abe, M. Saito, T. Arima and H. Okamoto, Visualization of ferroelectric domains in boracite using emission of terahertz radiation, Jap. J. Appl. Phys. 53, 09PD08 (2014).

    Article  Google Scholar 

  19. F. Sanjuan, G. Gaborit, and J.-L. Coutaz, Sub-wavelength terahertz imaging through optical rectification, Scientific Reports 8, 13492 (2018).

    Article  Google Scholar 

  20. V. Pasiskevicius, G. Strömqvist, F. Laurell and C. Canalias, Quasi-phase matched nonlinear media - Progress towards nonlinear optical engineering, Opt. Materials 34, 513 (2012).

    Article  Google Scholar 

  21. H. Karlsson, and F. Laurell, Electric field poling of flux grown KTiOPO4, Appl. Phys. Lett. 71, 3474 (1997).

    Article  Google Scholar 

  22. V. Pasiskevicius, S. Wang, H. Karlsson, J. A. Tellefsen, and F. Laurell, Efficient Nd:YAG laser frequency doubling with periodically poled KTP, Appl. Opt. 37, 7116 (1998).

    Article  Google Scholar 

  23. G. K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4, Opt. Lett. 33, 2955 (2008).

    Article  Google Scholar 

  24. T. Kellner, C. Czeranowsky, G. Huber, M. Pierrou, F. Laurell, and H. Karlsson, Generation of 740 mW of blue light by intracavity frequency doubling with a first order quasi-phasematched KTiOPO4 crystal, Opt. Lett. 24, 205 (1999).

    Article  Google Scholar 

  25. J.-P. Fève, O. Pacaud, B. Boulanger, B. Menaert, J. Hellström, and F Laurell, Widely and continuously tunable optical parametric oscillator using a cylindrical periodically poled KTiOPO4 crystal, Opt. Lett. 26, 1882 (2001).

  26. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP, Opt. Expr. 13, 5270 (2005).

    Article  Google Scholar 

  27. M.-H. Wu, Y.-C. Chiu, T.-D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y.-C. Huang, Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate, Opt. Exp. 24, 25964 (2016).

    Article  Google Scholar 

  28. S. Bozhevolnyi, K. Pedersen, F Laurell, H. Karlsson, J. M. Hvam, and T. Skettrup, Second-harmonic imaging of ferroelectric domain walls, Appl. Phys. Lett. 73, 1814 (1998).

  29. C. Canalias, V. Pasiskevicius, A. Fragemann, and F. Laurell, High resolution domain imaging on the non-polar y-face of periodically poled KTiOPO4 by means of atomic force microscopy, Appl. Phys. Lett., 83, 734 (2003).

    Article  Google Scholar 

  30. V. D. Antsygin, A. B. Kaplun, A. A. Mamrashev, N. A. Nikolaev, and O. I. Potaturkin, Terahertz optical properties of potassium titanyl phosphate crystals, Opt. Exp. 22, 25436 (2014).

    Article  Google Scholar 

  31. J. D. Bierlein and C. B. Arweiler, Electro-optic and dielectric properties of KTiOPO4, Appl. Phys. Lett. 49, 917 (1986).

    Article  Google Scholar 

  32. H. Vanherzeele and J. D. Bierlein, Magnitude of the nonlinear-optical coefficients of KTiOPO4, Opt. Lett. 17, 982 (1992).

    Article  Google Scholar 

  33. H. Karlsson, and F. Laurell, Electric field poling of flux grown KTiOPO4, Appl. Phys Letts. 71, 3474 (1997).

    Article  Google Scholar 

  34. A. Peña, B. Ménaert, B. Boulanger, F. Laurell, C. Canalias, V. Pasiskevicius, P. Segonds, C. Félix, J. Debray, and S. Pairis, Template-growth of periodically domain-structured KTiOPO4, Opt. Materials Express 1, 185 (2011).

    Article  Google Scholar 

  35. F. Garet, L. Duvillaret, and J.-L. Coutaz, Evidence of frequency-dependent THz beam polarization in time-domain spectroscopy, in Terahertz Spectroscopy and Applications, edited by Mark S. Sherwin, SPIE Proceedings 3617, p. 30 (1999).

    Chapter  Google Scholar 

  36. V. D. Antsygin, A. B. Kaplun, A. A. Mamrashev, N. A. Nikolaev, and O. I. Potaturkin, Terahertz optical properties of potassium titanyl phosphate crystals, Opt. Express 22, 25436 (2014).

    Article  Google Scholar 

  37. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. Khan, and P. Günter, Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, JOSA B 23, 1822 (2006).

    Article  Google Scholar 

Download references

Funding

The work of G. Soylu is supported by the French LabEx FOCUS ANR-11-LABX-0013 project. University Savoie Mont Blanc (France) and the Royal Institute of Technology (Sweden) collaborate through the NATO Science for Peace project G5396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Coutaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soylu, G., Hérault, E., Boulanger, B. et al. Sub-Wavelength THz Imaging of the Domains in Periodically Poled Crystals Through Optical Rectification. J Infrared Milli Terahz Waves 41, 1144–1154 (2020). https://doi.org/10.1007/s10762-020-00704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00704-3

Keywords

Navigation