Skip to main content
Log in

The Influence of Perinatal Stress and Antidepressants on Different Types of Adaptive Behavior and Cognitive Abilities of Prepubertal Female Rats

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

We investigated the influence of repeated peripheral inflammatory nociceptive stimulation of neonate female rats born to mothers exposed during pregnancy to chronic stress and the effect of an antidepressant drug fluoxetine, a selective serotonin (5-HT) reuptake inhibitor, and an anxiolytic drug buspirone, a 5-HT1A receptor agonist, on adaptive behavior and cognitive abilities of the offspring during the prepubertal period. The data on the effect of maternal stress exposure during the critical perinatal period of individual development on adaptive behavior and spatial learning abilities of the offspring provide support for the hypothesis on the possible beneficial effect of moderate stressful events experienced at an early age on stress tolerance in subsequent ontogenesis. The corrective effect of the above drugs on adaptive behavior and cognitive abilities of the prenatally stressed prepubertal female offspring exposed to repeated peripheral inflammatory pain at the neonatal stage is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Entringer, S., Buss, C., and Wadhwa, P.D., Prenatal stress, development, health and disease risk: a psychobiological perspective-2015 Curt Richter Award Paper, Psychoneuroendocrinol., 2015, vol. 62, pp. 366–375.

    Article  Google Scholar 

  2. Monk, C., Lugo-Candelas, C., and Trumpff, C., Prenatal developmental origins of future psychopathology: mechanisms and pathways, Annu. Rev. Clin. Psychol., 2019, vol. 15, pp. 317–344.

    Article  Google Scholar 

  3. McGowan, P.O. and Matthews, S.G., Prenatal stress, glucocorticoids, and developmental programming of the stress response, Endocrinol., 2018, vol. 159(1), pp. 69–82.

    Article  Google Scholar 

  4. Kundakovic, M. and Jaric, I., The epigenetic link between prenatal adverse environments and neurodevelopmental disorders, Genes (Basel), 2017, vol. 8(3). pii: E104

  5. Kiryanova, V., Smith, V.M., Antie, M.C., and Dyck, R.H., Behavior of adult 5-HT1A receptor knockout mice exposed to stress during prenatal development, Neurosci., 2018, vol. 371, pp. 16–28.

    Article  CAS  Google Scholar 

  6. Butkevich, I.P., Barr, G.A., and Mikhailenko, V.A., Effects of prenatal stress on serotoninergic neurons in the dorsal raphe nucleus and on pain behavior during the neonatal period of development, Neurosci. Behav. Physiol., 2016, vol. 46(9), pp. 1005–1010.

    Article  CAS  Google Scholar 

  7. Van den Hove, D.L., Lauder, J.M., Scheepens, A., Prickaerts, J., Blanco, C.E, and Steinbusch, H.W., Prenatal stress in the rat alters 5-HT1A receptor binding in the ventral hippocampus, Brain Res., 2006, vol. 1090, pp. 29–34.

  8. Butkevich, I.P., Mikhailenko, V.A., Shimarae-va, T.N., and Kochubeev, A.V., Correction of pain-related and affective behavior by combination of fluoxetine and buspirone in prenatally stressed rats, Pediatrician, 2018, vol. 9(3), pp. 57–63.

    Article  Google Scholar 

  9. Vahid-Ansari, F., Daigle, M., Manzini, M.C., Tanaka, K.F., Hen, R., Geddes, S.D., Béїque, J.C., James, J., Merali, Z., and Albert, P.R., Abrogated Freud-1/Cc2d1a repression of 5-HT1A autoreceptors induces fluoxetine-resistant anxiety/depression-like behavior, J. Neurosci., 2017, vol. 37(49), pp. 11967–11978.

    Article  CAS  Google Scholar 

  10. McAllister-Williams, R.H., Alhaj, H.A., Massey, A., Pankiv, J., and Reckermann, U., Somatodendritic 5-hydroxytryptamine1A (5-HT1A) autoreceptor function in major depression as assessed using the shift in electroencephalographic frequency spectrum with buspirone, Psychol. Med., 2014, vol. 44(4), pp. 767–77.

    Article  Google Scholar 

  11. Andrews, M.H. and Matthews, S.G., Programming of the hypothalamo-pituitary-adrenal axis: serotonergic involvement, Stress, 2004, vol. 7(1), pp. 15–27.

    Article  CAS  Google Scholar 

  12. Gupta, D., Radhakrishnan, M., Bhatt, S., and Kurhe, Y., Role of hypothalamic-pituitary-adrenal-axis in affective disorders: anti-depressant and anxiolytic activity of partial 5-HT1A agonist in adrenalectomized rats, Indian J. Psychol. Med., 2013, vol. 35(3), pp. 290–298.

    Article  Google Scholar 

  13. Hervas, I. and Artigas, F., Effect of fluoxetine on extracellular 5-hydroxytryptemine in rat brain. Role of 5-HT autoreceptors, Eur. J. Pharmacol., 1998, vol. 358, pp. 9–18.

    Article  Google Scholar 

  14. Kiryanova, V., McAllister, B.B., and Dyck, R.H., Long-term outcomes of developmental exposure to fluoxetine: a review of the animal literature, Dev. Neurosci., 2013, vol. 35, pp. 437–439.

    Article  CAS  Google Scholar 

  15. Olivier, J.D.A., Akerud, H., and Kaihola, H., The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring, Front. Cell. Neurosci., 2013, vol. 7(73). doi: 10.3389/fncel.2013.00073.

  16. Walker, S.M., Beggs, S., and Baccei, M.L., Persistent changes in peripheral and spinal nociceptive processing after early tissue injury, Exp. Neurol., 2016, vol. 275(2), pp. 253–260.

    Article  Google Scholar 

  17. Valeri, B.O., Holsti, L., and Linhares, M.B., Neonatal pain and developmental outcomes in children born preterm: a systematic review, Clin. J. Pain., 2015, vol. 31(4), pp. 355–362.

  18. Walker, S.M., Translational studies identify long-term impact of prior neonatal pain experience, Pain, 2017, vol. 158(1), pp. 29–42.

    Article  Google Scholar 

  19. Duerden, E.G., Grunau, R.E., Guo, T., Foong, J., Pearson, A., Au-Young, S., Lavoie, R., Chakravarty, M.M., Chau, V., Synnes, A., and Miller, S., Early procedural pain is associated with regionally-specific alterations in thalamic development in preterm neonates, J. Neurosci., 2018, vol. 38(4), pp. 878–886.

    Article  Google Scholar 

  20. Victoria, N.C. and Murphy, A.Z., The long-term impact of early life pain on adult responses to anxiety and stress: historical perspectives and empirical evidence, Exp. Neurol., 2016, vol. 275(2), pp. 261–273.

    Article  Google Scholar 

  21. Mooney-Leber, S.M. and Brummelte, S., Neonatal pain and reduced maternal care: early-life stressors interacting to impact brain and behavioral development, Neurosci., 2017, vol. 7(342), pp. 21–36.

    Article  CAS  Google Scholar 

  22. Mikhailenko, V.A., Butkevich, I.P., and Astapo-va, M.K., Long-term effects of stressors during the neonatal period of development on the nociceptive system and psychoemotional behavior, Neurosci. Behav. Physiol., 2017, vol. 47(8), pp. 930–940.

    Article  Google Scholar 

  23. Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A., Aloisi, A.M., and Barr, G.A., Long-term effects of chronic buspirone during adolescence reduce the adverse influences of neonatal inflammatory pain and stress on adaptive behavior in adult male rats, Front. Behav. Neurosci., 2017, vol. 26, p. 11.

  24. Nederhof, E. and Schmidt, M.V., Mismatch or cumulative stress: toward an integrated hypothesis of programming effects, Physiol. Behav., 2012, vol. 106, pp. 691–700.

    Article  CAS  Google Scholar 

  25. Daskalakis, N.P., Bagot, R.C., Parker, K.J., Vinkers, C.H., and Kloet, E.R., The three-hit concept of vulnerability and resilience: towards understanding adaptation to early-life adversity outcome, Psychoneuroendocrinol., 2013, vol. 38(9), pp. 1858–1873.

  26. Tirelli, E., Laviola, G., and Adriani, W., Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents, Neurosci. Biobehav. Rev., 2003, vol. 27(1–2), pp. 163–178.

    Article  Google Scholar 

  27. Kalinina, D.S., Lenkov, D.N., Zhuravin, I.A., and Volnova, A.B., Age dynamics of ECoG and epileptiform activity in Wistar rat cortical model of focal epilepsy, Neurosci. Behav. Physiol., 2018, vol. 48(8), pp. 1006–1013.

  28. Aloisi, A.M., Why we still need to speak about sex differences and sex hormones in pain, Pain Ther., 2017, vol. 6, pp. 111‒114.

    Article  Google Scholar 

  29. Glover, M.E. and Clinton, S.M., Of rodents and humans: a comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research, Int. J. Dev. Neurosci., 2016, vol. 51, pp. 50–72.

    Article  CAS  Google Scholar 

  30. Butkevich, I.P., Mikhailenko, V.A., Vershinina, E.A., Otellin, V.A., and Aloisi, A.M., Buspirone before prenatal stress protects against adverse effects of stress on emotional and inflammatory pain-related behaviors in infant rats: age and sex differences, Brain Res., 2011, vol. 1419, pp. 76–84.

    Article  CAS  Google Scholar 

  31. Heikkinen, T., Ekblad, U., Palo, P., and Laine, K., Pharmacokinetics of fluoxetine and norfluoxetine in pregnancy and lactation, Clin. Pharmacol. Ther., 2003, vol. 73, pp. 330–337.

    Article  CAS  Google Scholar 

  32. Boyd, M.A., Psychiatric Nursing, Philadelphia, 2008.

  33. Mikhailenko, V.A. and Butkevich, I.P., Prenatal effect of fluoxetine on nociceptive system reactivity and psychoemotional behavior of young female and male rats, J. Evol. Biochem. Physiol., 2018, vol. 54(4), pp. 322–331.

    Article  CAS  Google Scholar 

  34. Coderre, T.J., Katz, J., Vaccarino, A.L., and Melzack, R., Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence, Pain, 1993, vol. 52(3), pp. 259–285.

    Article  CAS  Google Scholar 

  35. Zimmerman, M., Committee for research and ethical issues of the IASP, Ethical standards for investigations of experimental pain in animals, Pain, 1983, vol. 16, pp. 109–110.

  36. Barakat, A., Hamdy, M.N., and Elbadr, M.M., Uses of fluoxetine in nociceptive pain management: a literature overview, Eur. J. Pharmacol., 2018, vol. 829, pp. 12‒25.

  37. Dharmshaktu, P., Tayal, V., and Kalra, B.S., Efficacy of antidepressants as analgesics: a review, J. Clin. Pharmacol., 2012, vol. 52, pp. 6–17.

    Article  CAS  Google Scholar 

  38. Palma-Gudiel, H., Cirera, F., Crispi, F., Eixarch, E., and Fañanás, L., The impact of prenatal insults on the human placental epigenome: a systematic review, Neurotoxicol. Teratol., 2018, vol. 66, pp. 80–93.

    Article  CAS  Google Scholar 

  39. Knaepen, L., Pawluski, J.L., Patijn, J., Kleef, M., Nibboel, D., and Joosten, E.A., Perinatal maternal stress and serotonin signaling: effects on pain sensitivity in offspring, Dev. Psychobiol., 2014, vol. 56, pp. 885–896.

    Article  Google Scholar 

  40. Said, N., Lakehayli, S., Battas, O., Hakkou, F., and Tazi, A., Effects of prenatal tress on anxiety-like behavior and pain response in rats, J. Integr. Neurosci., 2015, vol. 14(2), pp. 223–234.

  41. Wang, H. J., Xu, X., Xie, R.H., Rui, Y.Y., Zhang, P.A., Zhu, X.J., and Xu, G.Y., Prenatal maternal stress induces visceral hypersensitivity of adult rat offspring through activation of cystathionine-β-synthase signaling in primary sensory neurons, Mol. Pain, 2018, vol. 14, doi: 10.1177/1744806918777406

    Article  Google Scholar 

  42. Oberlander, T.F., Grunau, R.E., Fitzgerald, C., Papsdorf, M., Rurak, D., and Riggs, K.W., Pain reactivity in 2-month-old infants after prenatal and postnatal serotonin reuptake inhibitor medication exposure, Pediatrics, 2005, vol. 115, pp. 411–425.

    Article  Google Scholar 

  43. Butkevich, I.P. and Mikhailenko, V.A., Differences in the prenatal influence of fluoxetine and buspirone on reaction pain system and the behavior of young rats, Russ. J. Physiol., 2018, vol. 104(4), pp. 440–451.

  44. Patel, T.D. and Zhou, F.C., Ontogeny of 5-HT1A receptor expression in the developing hippocampus, Devel. Brain Res., 2005, vol. 157, pp. 42–57.

    Article  CAS  Google Scholar 

  45. Rayen, I., van den Hove, D.L., Prickaerts, J., Steinbusch, H.W., and Pawluski, J.L., Fluoxetine during development reverses the effects of prenatal stress on depressive-like behavior and hippocampal neurogenesis in adolescence, PloS One, 2011, vol. 6(9), e24003.

    Article  CAS  Google Scholar 

  46. Verstraeten, B.S.E., McCreary, J., Weyers, S., Metz, G.A.S., and Olson, D.M., Prenatal two-hit stress affects maternal and offspring pregnancy outcomes and uterine gene expression in rats: match or mismatch? Biol. Reprod., 2019, vol. 100(1), pp. 195–207.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 17-04-00214a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Butkevich.

Ethics declarations

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed. This study did not involve human subjects as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butkevich, I.P., Mikhailenko, V.A. & Vershinina, E.A. The Influence of Perinatal Stress and Antidepressants on Different Types of Adaptive Behavior and Cognitive Abilities of Prepubertal Female Rats. J Evol Biochem Phys 56, 133–144 (2020). https://doi.org/10.1134/S0022093020020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093020020052

Keywords:

Navigation