Skip to main content
Log in

Copper oxide immobilized clay nano architectures as an efficient electrochemical sensing platform for hydrogen peroxide

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An electrochemical sensor for hydrogen peroxide (H2O2) present in face bleach cream is fabricated using a composite based on bentonite (Bt) clay and copper oxide (CuO) nanoparticles (CuO-Bt). The CuO nanoparticles’ immobilization into Bt was carried out by a two-step process in which Cu2+ is ion-exchanged into Bt layers (Cu2+-Bt) in the first step followed by the chemical reaction of NaOH with Cu2+-Bt in the second step to get the target material, CuO nanoparticles immobilized Bt (CuO-Bt). The successful immobilization of CuO nanoparticles into Bt is investigated by a variety of techniques like scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, UV-Vis spectroscopy, and electrochemical methods. The CuO-Bt composite is coated on a glassy carbon electrode and used as a selective electrochemical sensing platform for the determination of H2O2 based on the significant electrocatalytic property of CuO-Bt towards the H2O2 oxidation. This amperometric electrochemical sensor shows two linear detection ranges (5–50 μM and 50–10000 μM) with a limit of detection of 4.9 μM. The sensitivity is calculated to be 0.06 µA µM−1 cm−2. This electrochemical sensor exhibits high selectivity, stability, and practical applicability for the H2O2 determination in real samples.

Graphic Abstract

Schematic presentation of copper oxide immobilized clay nano architectures as an efficient electrochemical sensing platform for practical applicability of the H2O2 determination in face bleach cream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fitch A 1990 Clay-modified electrodes: a review Clays Clay Miner. 38 391

    CAS  Google Scholar 

  2. Mousty C 2004 Sensors and biosensors based on clay-modified electrodes-new trends Appl. Clay Sci. 27 159

    CAS  Google Scholar 

  3. Vaccari A 1998 Preparation and catalytic properties of cationic and anionic clays Angelo Vaccari Catal. Today 41 53

    CAS  Google Scholar 

  4. Vaccari A 1999 Clays and catalysis: a promising future Appl. Clay Sci. 14 161

    CAS  Google Scholar 

  5. Rastogi P K, Yadav D K, Pandey S, Ganesan V, Sonkar P K and Gupta R 2016 Synthesis and characterization of gold nanoparticles incorporated bentonite clay for electrocatalytic sensing of arsenic(III) J. Chem. Sci. 128 349

    CAS  Google Scholar 

  6. Yadav D K, Gupta R, Ganesan V, Sonkar P K and Rastogi P K 2016 Electrochemical sensing platform for hydrogen peroxide determination at low reduction potential using silver nanoparticle-incorporated bentonite clay J. Appl. Electrochem. 46 103

    CAS  Google Scholar 

  7. Yadav D K, Gupta R, Ganesan V and Sonkar P K 2017 Individual and simultaneous voltammetric determination of ascorbic acid, uric acid and folic acid by using a glassy carbon electrode modified with gold nanoparticles linked to bentonite via cysteine groups Microchim. Acta 184 1951

    CAS  Google Scholar 

  8. Chiang C Y, Aroh K and Ehrman S H 2012 Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting-Part I. CuO nanoparticle preparation Int. J. Hydrogen Energy 37 4871

    CAS  Google Scholar 

  9. Wu D, Xu Z, Zhang T, Shao Y, Xi P, Li H and Xu C 2016 Cu2O/CuO@rGO heterostructure derived from metal–organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H2O2 sensor RSC Adv. 6 103116

    CAS  Google Scholar 

  10. Sankar R, Maheswari R, Karthik S, Shivashangari K S and Ravikumar V 2014 Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles Mater. Sci. Eng. C 44 234

    CAS  Google Scholar 

  11. Maleh H K, Amini F, Akbari A and Shojaei M 2017 Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid J. Colloid Interface Sci. 495 61

    Google Scholar 

  12. White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N and Brien S 2006 Complete CO oxidation over Cu2O nanoparticles supported on silica gel Nano Lett. 6 2095

    CAS  PubMed  Google Scholar 

  13. Gupta R, Singh P, Koch B, Ganesan V, Rastogi P K, Yadav D K and Sonkar P K 2018 Palladium nanoparticles supported on mesoporous silica microspheres for enzyme-free amperometric detection of H2O2 released from living cells Sens. Actuat. B-Chem. 276 517

    CAS  Google Scholar 

  14. Chen W, Chen J, Feng Y B, Hong L, Chen Q Y, Wu L F, Lin X H and Xia X H 2012 Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose Analyst 137 1706

    CAS  PubMed  Google Scholar 

  15. Song M J, Hwang S W and Whang D 2010 Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection Talanta 80 1648

    CAS  PubMed  Google Scholar 

  16. Wu D, Xu Z, Zhang T, Shao Y, Xi P, Li H and Xu C 2016 Cu2O/CuO@rGO hetero structure derived from metal-organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H2O2 sensor RSC Adv. 6 103116

    CAS  Google Scholar 

  17. Tarvin M, McCord B, Mount K, Sherlach K and Miller M L 2010 Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode J. Chromatogr. A 1217 7564

    CAS  PubMed  Google Scholar 

  18. Baga A N, Johnson G R A, Nazhat N B and Nazhat R A S 1988 A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution Anal. Chim. Acta 204 349

    CAS  Google Scholar 

  19. Gimeno P, Bousquet C, Lassu N, Maggio A F, Civade C, Brenier C and Lempereur L 2015 High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products J. Pharm. Biomed. Anal. 107 386

    CAS  PubMed  Google Scholar 

  20. Hurdis E C and Romeyn H 1954 Accuracy of determination of hydrogen peroxide by cerate oxidimetry Anal. Chem. 26 320

    CAS  Google Scholar 

  21. Hanaoka S, Lin J M and Yamada M 2001 Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin Anal. Chim. Acta 426 57

    CAS  Google Scholar 

  22. Kayani Z N, Umer M, Riaz S and Naseem S 2015 Characterization of Copper Oxide Nanoparticles Fabricated by the Sol-Gel Method J. Electron. Mater. 44 3704

    CAS  Google Scholar 

  23. Srivastava S, Kumar M, Agrawal A and Dwivedi S K 2013 Synthesis and characterisation of copper oxide nanoparticles J. Appl. Phys. 5 61

    Google Scholar 

  24. Azad U P, Turllapati S, Rastogi P K and Ganesan V 2014 Tris(1,10-phenanthroline)iron(II)-bentonite film as efficient electrochemical sensing platform for nitrite determination Electrochim. Acta 127 193

    CAS  Google Scholar 

  25. Mallakpour S and Dinari M 2011 Preparation and characterization of new organoclays using natural amino acids and Cloisite Na+ Appl. Clay Sci. 51 353

    CAS  Google Scholar 

  26. Felix S, Chakkravarthy R B P and Grace A N 2015 Microwave assisted synthesis of copper oxide and its application in electrochemical sensing Mater. Sci. Eng. 73 012115

    Google Scholar 

  27. Sankar R, Maheswari R, Karthik S, Shivashangari K S and Ravikumar V 2014 Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles Mater. Sci. Eng. C 44 234

    CAS  Google Scholar 

  28. Yin M, Wu C K, Lou Y, Burda C, Koberstein J T, Zhu Y and Brien S 2005 Copper oxide nanocrystals J. Am. Chem. Soc. 127 9506

    CAS  PubMed  Google Scholar 

  29. Chen W, Hong L, Liu A L, Liu J Q, Lin X H, Xia X H 2012 Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic Talanta 99 643

    CAS  PubMed  Google Scholar 

  30. Huo H, Guo C, Li G, Han X and Xu C 2014 Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor RSC Adv. 4 20459

    CAS  Google Scholar 

  31. Bellakhal N, Draou K and Brisset J L 1997 Electrochemical investigation of copper oxide films formed by oxygen plasma treatment J. Appl. Electrochem. 27 414

    CAS  Google Scholar 

  32. Vazquez M V, Sanchez S R, Calvo E J and Schiffrin D J 1994 The electrochemical reduction of hydrogen peroxide on polycrystalline copper in borax buffer J. Electroanal. Chem. 374 179

    CAS  Google Scholar 

  33. Casella I G, Cataldi T R I, Guerrieri A and Desimoni E 1996 Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds Anal. Chim. Acta 335 217

    CAS  Google Scholar 

  34. Yuan J, Xu S, Zeng H Y, Cao X, Pan A D, Xiao G F and Ding P X 2018 Hydrogen peroxide biosensor based on chitosan/2D layered double hydroxide composite for the determination of H2O2 Bioelectrochemistry 123 94

    CAS  PubMed  Google Scholar 

  35. You T, Qing C, Quanhui L, Guolin Y, Hongtao G, Gang C and Chengjun D 2018 Surf. Interfac. 12 102

    Google Scholar 

  36. Guzsvany V, Vajdle O, Gurdeljevic M and Konya Z 2018 Highly sensitive nonenzymatic H2O2 sensor based on Ni Fe-layered double hydroxides nanosheets grown on Ni foam Top. Catal. 61 1350

    CAS  Google Scholar 

  37. Liu C, Shi E, Yao J and Peng R 2018 Ag or Au nanoparticles decorated multiwalled carbon nanotubes coated carbon paste electrodes for amperometric determination of H2O2 Int. J. Electrochem. Sci. 13 5253

    CAS  Google Scholar 

  38. Lv J, Kong C, Liu K, Yin L, Ma B, Zhang X, Yang S and Yang Z 2018 Promotion effects of CNTs-MnO2 nanowires-composite on direct electron transfer of hemoglobin for amperometric H2O2 determination Chem. Commun. 54 8458

    CAS  Google Scholar 

  39. Kamyabi M A and Hajari N 2017 Surfactant-free synthesis of Cu2O yolk-shell cubes decorated with Pt nanoparticles for enhanced H2O2 detection J. Braz. Chem. Soc. 28 808

    CAS  Google Scholar 

  40. Chen M, Yang B, Zhu J, Liu H, Zhang X, Zheng X and Liu Q 2018 FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2 Mater. Sci. Eng. C 90 610

    CAS  Google Scholar 

  41. Jin G H, Ko E, Kim M K, Tran V K, Son S E, Geng Y, Hur W and Seong G H 2018 Graphene oxide-gold nanozyme for highly sensitive electrochemical detection of hydrogen peroxide Sens. Actuat. B Chem. 274 201

    CAS  Google Scholar 

  42. Li C, Zhang T, Zhao J, Liu H, Zheng B, Gu Y, Yan X, Li Y, Lu N, Zhang Z and Feng G 2017 Boosted sensor performance by surface modification of bifunctional rht-type metal-organic framework with nanosized electrochemically reduced graphene oxide ACS Appl. Mater. Interfaces 9 2984

    CAS  PubMed  Google Scholar 

  43. Zhang Y, Liu Y, He J, Pang P, Gao Y and Hu Q 2013 Electrochemical behavior of graphene/Nafion/Azure I/Au nanoparticles composites modified glass carbon electrode and its application as nonenzymatic hydrogen peroxide sensor Electrochim. Acta 90 550

    CAS  Google Scholar 

  44. Raj C R and Chakraborty S 2009 Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2 Biosens. Bioelectron.24 3264

    PubMed  Google Scholar 

  45. Gupta R and Ganesan V 2015 Gold nanoparticles impregnated mesoporous silica spheres for simultaneous and selective determination of uric acid and ascorbic acid Sens. Actuat. B Chem. 219 139

    CAS  Google Scholar 

  46. Bard A J and Faulkner L R 1980 Electrochemical Methods; Fundamentals, Applications (New York: Wiley)

    Google Scholar 

Download references

Acknowledgements

Financial support from DST-ASEAN (IMRC/AISTDF/R&D/P-16/2018), New Delhi is gratefully acknowledged. DKY acknowledges UGC for senior research fellowship (SRF). We thank Dr. S.A. John, Gandhigram Rural Institute for SEM and EDAX studies. We thank Ms. Anindita Dutta for her assistance during the initial stage of this study in the synthesis and characterization of the material and the electrocatalytic determination H2O2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellaichamy Ganesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D.K., Ganesan, V., Gupta, R. et al. Copper oxide immobilized clay nano architectures as an efficient electrochemical sensing platform for hydrogen peroxide. J Chem Sci 132, 68 (2020). https://doi.org/10.1007/s12039-020-01778-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01778-1

Keywords

Navigation