Skip to main content
Log in

Disruption in phosphate transport affects membrane lipid and lipid droplet homeostasis in Saccharomyces cerevisiae

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Phosphate plays a crucial role in phospholipid metabolism and it is transported by the phosphate (Pi) transporters. Phospholipids are building blocks of the cell membrane, and essential for cell growth; however, the role of phosphate transporters in lipid metabolism remains elusive. The present study shows that the deletion of Pi transporters exhibited an increase in both phospholipid and neutral lipid levels when compared to wild type. The mRNA expressions of genes involved in phospholipid synthesis (CKI1, EKI1, CHO2, and OPI3) were increased due to de-repression of the transcription factors (INO2 and INO4). Neutral lipid levels (triacylglycerol and sterol ester) and their synthesizing genes (LRO1, ARE2, ACC1, and FAS1) were also increased, resulting in lipid droplet accumulation in Pi transporter mutants. Interestingly, phospholipase (PLC1) and histone acetyltransferase genes (ESA1, EAF1, YNG1, YNG2, and GCN5) were also found to be significantly increased, leading to dysregulation of lipid levels in Pi transporter mutants. In summary, our results suggest that the Pi transporters are involved in lipid droplet and membrane lipid homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Feel W, Chirala SS, Wakil SJ (1992) Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc Natl Acad Sci 89:4534–4538

    CAS  PubMed  Google Scholar 

  • Ambroziak J, Henry SA (1994) INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae form a complex that binds to the INO1 promoter. J Biol Chem 269:15344–15349

    CAS  PubMed  Google Scholar 

  • Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG, Jan CH, Haßdenteufel S, Dudek J, Jung M, Schorr S, Zimmermann R, Schwappach B, Weissman JS, Schuldiner M (2016) The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 30 540(7631):134–138

    CAS  Google Scholar 

  • Birner R, Burgermeister M, Schneiter R, Daum G (2001) Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol Biol Cell 12:997–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351

    CAS  PubMed  Google Scholar 

  • Cermelli S, Guo Y, Gross SP, Welte MA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol 16:1783–1795

    CAS  PubMed  Google Scholar 

  • Choy JS, Tobe BT, Huh JH, Kron SJ (2001) Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression. J Biol Chem 276:43653–43662

    CAS  PubMed  Google Scholar 

  • Cox JS, Chapman RE, Walter P (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8:1805–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Houweling M (2002) Phosphatidylcholine and cell death. Biochim Biophys Acta 1585:87–96

    CAS  PubMed  Google Scholar 

  • Exton JH et al (1994) Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42

    CAS  PubMed  Google Scholar 

  • Flis VV, Fankl A, Ramprecht C, Zellnig G, Leitner E, Hermetter A, Daum G (2015) Phosphatidylcholine supply to peroxisomes of the yeast Saccharomyces cerevisiae. PLoS One 8:0135084

    Google Scholar 

  • Galdieri L, Vancura A (2012) Acetyl-CoA carboxylase regulates global histone acetylation. J Biol Chem 287:23865–23876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galdieri L, Chang J, Mehrotra S, Vancura A (2013) Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation. J Biol Chem 288:27986–27998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garbarino J, Padamsee M, Wilcox L, Oelkers PM, Ambrosio DD, Ruggles KV, Ramsey N, Jabado O, Turkish A, Sturley SL (2009) Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. J Biol Chem 284:30994–31005

  • Ghosh AK, Ramakrishnan G, Rajasekharan R (2008) YLR099C (ICT1) encodes a soluble acyl CoA dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem 283:9768–9775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gombert AK, Moreira dos Santos M, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD (1993) Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 268:10946–10952

    CAS  PubMed  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of Glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heyland J, Fu J, Blank LM (2009) Correlation between TCA flux and glucose uptake rate during respire-fermentative growth of Saccharomyces cerevisiae. Microbiology. 155:3827–3837

    CAS  PubMed  Google Scholar 

  • Horvath SE, Wagner A, Steyrer E, Daum G (2011) Metabolic link between phosphatidylethanolamine and triacylglycerol metabolism in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1811(12):1030–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howe AG, McMaster CR (2001) Regulation of vesicle trafficking, transcription, and meiosis: lessons learned from yeast regarding the disparate biologies of phosphatidylcholine. Biochim Biophys Acta 1534:65–77

    CAS  PubMed  Google Scholar 

  • Hürlimann HC, Stadler-Waibel M, Werner TP, Freimoser FM (2007) Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell 18(11):4438–4445

    PubMed  PubMed Central  Google Scholar 

  • James AW, Nachiappan V (2014) Phosphate transporter-mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions. Bioresour Technol 151:100–105

    CAS  PubMed  Google Scholar 

  • James AW, Gowsalya R, Nachiappan V (2016) Dolichyl pyrophosphate phosphatase-mediated N-glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta 186:1705–1718

    Google Scholar 

  • Jensen LT, Ajua-Alemanji M, Culotta VC (2003) The Saccharomyces cerevisiae high-affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036–42040

    CAS  PubMed  Google Scholar 

  • Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML (2009) Cellular functions of cardiolipin in yeast. Biochem Biophys Acta 1793:212–218

    CAS  PubMed  Google Scholar 

  • Kent C, Carman GM (1999) Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci 24:146–150

    CAS  PubMed  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    CAS  PubMed  Google Scholar 

  • Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV Jr, Walther TC (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab 14:504–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD (1998) Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12:627–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau WT, Howson RW, Malkus P, Schekman R, O Shea EK (2000) Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci 97:1107–1112

  • Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA (2000) Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405:701–704

    CAS  PubMed  Google Scholar 

  • Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD (2008) A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 22:2062–2074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H (2009) Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 136:1073–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ljungdahl PO, Daignan-Fornier B (2011) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929

    Google Scholar 

  • Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y, Lin MI, Chiang FT, Tai TY, Berger SL, Zhao Y, Tsai KS, Zhu H, Chuang LM, Boeke JD (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146:969–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menon AK, Stevens VL (1992) Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein. J Biol Chem 267:15277–15280

    CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishina M, Roggenkamp R, Schweizer E (1980) Yeast mutants defective in acetyl-coenzyme a carboxylase and biotin: apocarboxylase ligase. Eur J Biochem 111:79–87

    CAS  PubMed  Google Scholar 

  • Nebauer R, Birner-Grünberger DG (2003) Biogenesis and cellular dynamics of glycerophospholipids in the yeast Saccharomyces cerevisiae. Top Curr Genet 6:125–168

    Google Scholar 

  • Oelkers P, Tinkelenberg A, Erdeniz N, Cromley D, Billheimer JT, Sturley SL (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem 275:15609–15612

    CAS  PubMed  Google Scholar 

  • Reddy VS, Singh AK, Rajasekharan R (2008) The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase. J Biol Chem 283:8846–8854

    CAS  PubMed  Google Scholar 

  • Riekhof WR, Wu J, Gijon MA, Zarini S, Murphy RC, Voelker DR (2007) Lysophosphatidylcholine metabolism in Saccharomyces cerevisiae: the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J Biol Chem 282:36853–36861

    CAS  PubMed  Google Scholar 

  • Sabet N, Volo S, Yu C, Madigan JP, Morse RH (2004) Genome wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast. Mol Cell Biol 24:8823–8833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiter R, Guerra CE, Lampl M, Gogg G, Kohlwein SD, Klein HL (1999) The Saccharomyces cerevisiae hyper recombination mutant hpr1Delta is synthetically lethal with two conditional alleles of the acetyl coenzyme a carboxylase gene and causes a defect in nuclear export of polyadenylated RNA. Mol Cell Biol19: 3415–3422

  • Sebastian S, Prinz WA, Thorn KS, Voss C, Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187:525–536

    Google Scholar 

  • Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM (2001) Inhibition of acetyl-coenzyme a carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 21:5710–5722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siakotos AN, Rouser G, Fleischer S (1966) Phospholipid composition of human, bovine and frog myelin isolated on a large from brain and spinal cord. Lipids 1:85–86

    PubMed  Google Scholar 

  • Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Botany 56:273–286

    CAS  Google Scholar 

  • Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbial Biotechnol 61:289–299

    CAS  Google Scholar 

  • Steger DJ, Haswell ES, Miller AL, Wente SR, O Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299: 114–116

  • Takahashi H, MacCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217

    CAS  PubMed  Google Scholar 

  • Valachovic M, Hronska L, Hapala I (2001) Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 197:41–45

    CAS  PubMed  Google Scholar 

  • Vogelauer M, Wu J, Suka N, Grunstein M (2000) Global histone acetylation and deacetylation in yeast. Nature 408:495–498

    CAS  PubMed  Google Scholar 

  • William James A, Ravi C, Srinivasan M, Nachiappan V (2019) Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci rep 9; 9(1):14485

  • Yadav KK, Singh N, Rajasekharan R (2015) PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae. Mol Microbiol 98:456–472

    CAS  PubMed  Google Scholar 

  • Yadav KK, Singh N, Rajasekharan R (2016) Responses to phosphate deprivation in yeast cells. Curr Genet 62(2):301–307

    CAS  PubMed  Google Scholar 

  • Yang H, Bard M, Bruner D, Gleeson AA, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley L (1996) Sterol esterification in yeast: a two-gene process. Science 272:1353–1356

    CAS  PubMed  Google Scholar 

  • Yompakdee C, Ogawa N, Harashima S, Oshima Y (1996) A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae. Mol Gen Genet 251:580–590

    CAS  PubMed  Google Scholar 

  • Yu C, Kennedy NJ, Chang CC, Rothblatt JA (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA: sterol acyltransferase. J Biol Chem 271:24157–24163

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ram Rajasekharan, Central Food Technological Research Institute, India, for providing the yeast strains and reagents for this study. Junior Research Fellowship provided by the Department of Science & Technology (DST-PURSE), India, is gratefully acknowledged. Instrumentation facility under the DST-FIST program for the Department of Biochemistry, and DST-PURSE program and Centre for Excellence of the Bharathidasan University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasanthi Nachiappan.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subitha, M., James, A.W., Sivaprakasam, C. et al. Disruption in phosphate transport affects membrane lipid and lipid droplet homeostasis in Saccharomyces cerevisiae. J Bioenerg Biomembr 52, 215–227 (2020). https://doi.org/10.1007/s10863-020-09837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-020-09837-5

Keywords

Navigation