Skip to main content
Log in

A Mechanical Device to Evaluate the Effects of Dynamic Loading in Weak-acid Medium on the Bioapatite of Devitalized Cortical Bone

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

A new device that enables the application of controlled mechanical loads to devitalized cortical bone blocks in liquid media mimicking physiological environment is described. In the setup, it is possible to evaluate elimination of calcium from a bone during the exposure to slightly acidic media in the presence or absence of periodic controlled mechanical load. In the test experiments with the fragments of cortical bone, the level of calcium elimination from a bone during the experiment has shown the visible dissimilarity for the loaded bone and the unloaded one. The structural alterations in the apatite of the bone after the experiments in the setup have been studied by X-ray diffraction (XRD), which has shown that the lattice microstrain parameter of the bone mineral noticeably increases in the loaded bone compared with unloaded, while the crystallite size shows only a trend to slight increasing. This simple and easy to reproduce bone-loading setup could be used for in vitro studies of the bone material stability under mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611

    Article  CAS  Google Scholar 

  2. Oganov VS, Grigor'ev AI, Voronin LI, Rakhmanov AS, Bakulin AV, Schneider VS, LeBlanc AD (1992) Bone mineral density in cosmonauts after 4·5–6 month long flights aboard orbital station MIR. Aviakosmicheskaia i Ekologicheskaia Meditsina (Aerospace and Environmental Medicine) 26:20–24

    CAS  Google Scholar 

  3. Collet P, Uebelhart D, Vico L, Moro L, Hartmann D, Roth M, Alexandre C (1997) Effects of 1 month and 6 month spaceflight on bone mass and biochemistry on two humans. Bone 20:547–551

    Article  CAS  Google Scholar 

  4. Javaid MK, Richard H (2008) Understanding osteoporosis. J Psychopharmacol 22:38–45

    Article  Google Scholar 

  5. Sambrook P, Cooper C (1996) Osteoporosis. Lancet 367:2010–2018

    Article  Google Scholar 

  6. Uebelhart D, Bernard J, Hartmann DJ, Moro L, Roth M, Uebelhart B et al (2000) Modifications of bone and connective tissue after orthostatic bedrest. Osteoporos Int 11(1):59–67

    Article  CAS  Google Scholar 

  7. Inoue M, Tanaka H, Moriwake T, Oka M, Sekiguchi C, Seino Y (2000) Altered biochemical markers of bone turnover in humans during 120 days of bed rest. Bone 26:281–286

    Article  CAS  Google Scholar 

  8. Hillam RA, Skerry TM (1995) Inhibition of bone resorption and stimulation of formation by mechanical loading of the modeling rat ulna in vivo. J Bone Miner Res 10(5):683–689

    Article  CAS  Google Scholar 

  9. De Souza RL, Matsuura M, Eckstein F, Rawlinson SC, Lanyon LE, Pitsillides AA (2005) Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37:810–818

    Article  Google Scholar 

  10. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498

    Article  CAS  Google Scholar 

  11. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875

    Article  CAS  Google Scholar 

  12. Ferreira AM, González G, González-Paz RJ, Feijoo JL, Lira-Olivares J, Noris-Suárez K (2009) Bone collagen role in piezoelectric mediated remineralization. Acta Microscopica 18:278–286

    CAS  Google Scholar 

  13. Miho N, Rumi H, Kimihiro Y (2012) Bone mineral as an electrical energy reservoir. J Biomed Mater Res A 100A:1368–1374

    Article  Google Scholar 

  14. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508

    Article  CAS  Google Scholar 

  15. Danilchenko SN, Moseke C, Sukhodub LF, Sulkio-Cleff B (2004) X-ray diffraction studies of bone apatite under acid demineralization. Cryst Res Technol 39(1):71–77

    Article  CAS  Google Scholar 

  16. Figueiredo M, Cunha S, Martins G, Freitas J, Judas F, Figueiredo H (2011) Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chem Eng Res Des 89(1):116–124

    Article  CAS  Google Scholar 

  17. El-Bassyouni GT, Guirguis OW, Abdel-Fattah WI (2013) Morphological and macrostructural studies of dog cranial bone demineralized with different acids. Curr Appl Phys 13(5):864–874

    Article  Google Scholar 

  18. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Article  CAS  Google Scholar 

  19. Sasaki N, Sudoh Y (1997) X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int 60(4):361–367

    Article  CAS  Google Scholar 

  20. Danilchenko SN, Kukharenko OG, Moseke C, Protsenko IY, Sukhodub LF, Sulkio-Cleff B (2002) Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst Res Technol 37(11):1234–1240

    Article  CAS  Google Scholar 

  21. Carlström D, Glas JE (1959) The size and shape of the apatite crystallites in bone as determined from line-broadening measurements on oriented specimens. Biochim Biophys Acta 35:46–53

    Article  Google Scholar 

  22. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113

    Article  CAS  Google Scholar 

  23. Handschin RG, Stern WB (1995) X-ray diffraction studies on the lattice perfection of human bone apatite (crista iliaca). Bone 16(4):S355–S363

    Article  Google Scholar 

  24. Turunen MJ, Kaspersen JD, Olsson U, Guizar-Sicairos M, Bech M, Schaff F, Isaksson H (2016) Bone mineral crystal size and organization vary across mature rat bone cortex. J Struct Biol 195(3):337–344

    Article  CAS  Google Scholar 

  25. Sakae T, Kono T, Okada H, Nakada H, Ogawa H, Tsukioka T, Kaneda T (2017) X-ray micro-diffraction analysis revealed the crystallite size variation in the neighboring regions of a small bone mass. Journal of Hard Tissue Biology 26(1):103–107

    Article  Google Scholar 

  26. Cowin SC (2001) Bone mechanics handbook. CRC Press, Boca Raton, FL

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the International Science & Technology Cooperation Program of China (NO. 2015DFR30940), the Science and Technology Research Project of Gansu Province (No.17JR5RA307 and NO.145RTSA012), Special Program from Chinese Academy of Science in Cooperation with Russia, Ukraine and the Republic of Belarus (2015, 2017), and the Introduced Intelligence project from the State Administration of Foreign Experts Affairs P.R. China (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.N. Kalinkevich.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhovner, M., Kalinkevich, A., Danilchenko, S. et al. A Mechanical Device to Evaluate the Effects of Dynamic Loading in Weak-acid Medium on the Bioapatite of Devitalized Cortical Bone. Exp Tech 44, 591–596 (2020). https://doi.org/10.1007/s40799-020-00380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-020-00380-x

Keywords

Navigation