Skip to main content
Log in

75LiF + 25SmF3 Eutectic Composite and Ionic Conductivity of SmF3 near the Polymorphic α–β Transition

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

75 mol % LiF + 25 mol % SmF3 eutectic composite is obtained by fusing components in a CF4 atmosphere. The composite is multiphase and consists of β-SmF3 (sp. gr. Pnma, a = 6.6703(2) Å, b = 7.0557(2) Å, c = 4.4005(2) Å), LiF (sp. gr. \(Fm\bar {3}m\), a = 4.0234(3) Å), and a small amount (up to 4.5% of the total trifluoride content) of α-SmF3 (sp. gr. \(P\bar {3}c1\), a = 6.946(1) Å, c = 7.136(1) Å). The conductometric measurements are carried out in a heating–cooling cycle in the range of 463–827 K. A first-order phase transition is detected upon heating at Ttr = 763 ± 15 K, which increases the conductivity σdc of the composite by a factor of ~10. After the experiment, the α-SmF3 phase content in the composite increases by a factor of almost 3. According to the differential scanning calorimetry data, the polymorphic transition in pure SmF3 component occurs at Tβ−α = 764.6 ± 0.2 K. The first-order transition in the composite is assigned to the polymorphic β-SmF3 → α-SmF3 transition. Upon cooling, a reverse transition from the high-temperature α-SmF3 (LaF3 type) to the low-temperature form β-SmF3 (β-YF3 type) is kinetically retarded. The enthalpy of σdc activation for α-SmF3 is ΔHσ = 0.37 ± 0.05 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. H. Spedding, B. J. Beaudry, D. C. Henderson, and J. Moorman, J. Chem. Phys. 60, 1578 (1974).

    Article  ADS  Google Scholar 

  2. B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, and N. L. Tkachenko, J. Solid State Chem. 17, 201 (1976).

    Article  ADS  Google Scholar 

  3. O. Greis and M. S. R. Cadar, Thermochim. Acta 7, 145 (1985).

    Article  Google Scholar 

  4. K. Rotereau, Ph. Daniel, A. Desert, and J. Y. Gesland, J. Phys.: Condens. Matter 10, 1431 (1998).

    ADS  Google Scholar 

  5. B. P. Sobolev, P. P. Fedorov, D. B. Shteynberg, et al., J. Solid State Chem. 17, 191 (1976).

    Article  ADS  Google Scholar 

  6. A. I. Livshits, V. M. Buznik, P. P. Fedorov, and B. P. Sobolev, Nuclear Magnetic Resonance in Crystals (Izd. Inst. Fiziki SO AN SSSR, Krasnoyarsk, 1978) [in Russian], p. 90.

    Google Scholar 

  7. B. P. Sobolev, L. S. Garashina, P. P. Fedorov, et al., Kristallografiya 18 (4), 751 (1973).

    Google Scholar 

  8. O. Greis and T. Petzel, Z. Anorg. Allgem. Chem. 403, 1 (1974).

    Google Scholar 

  9. V. Trnovcova, P. P. Fedorov, C. Barta, et al., Solid State Ionics 119, 173 (1999).

    Article  Google Scholar 

  10. M. O’Keeffe, Science 180, 1276 (1973).

    Article  ADS  Google Scholar 

  11. V. Trnovcova, P. P. Fedorov, B. P. Sobolev, et al., Crystallogr. Rep. 41 (4), 694 (1996).

    ADS  Google Scholar 

  12. N. I. Sorokin, B. P. Sobolev, and M. Breiter, Phys. Solid State 44 (2), 282 (2002).

    Article  ADS  Google Scholar 

  13. P. P. Fedorov, Russ. J. Inorg. Chem. 44 (11), 1703 (1999).

    Google Scholar 

  14. Q. C. Yan and X. M. Guo, Solid State Commun. 272, 63 (2018).

    Article  ADS  Google Scholar 

  15. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Crystallogr. Rep. 41 (2), 292 (1996).

    ADS  Google Scholar 

  16. N. I. Sorokin, D. N. Karimov, N. V. Samsonova, et al., Crystallogr. Rep. 64 (3), 488 (2019). https://doi.org/10.1134/S0023476119030263

    Article  ADS  Google Scholar 

  17. M. O’Keeffe and B. G. Hyde, J. Solid State Chem. 13 (3), 172 (1975).

    Article  ADS  Google Scholar 

  18. B. V. Bukvetskii and L. S. Garashina, Koord. Khim. 3 (7), 1024 (1977).

    Google Scholar 

  19. J. M. Haschke, J. Solid State Chem. 18 (3), 205 (1976).

    Article  ADS  Google Scholar 

  20. L. S. Garashina, B. P. Sobolev, V. B. Aleksandrov, and Yu. S. Vishnyakov, Kristallografiya 25 (2), 294 (1980).

    Google Scholar 

  21. G. A. Bandurkin and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 168 (6), 1315 (1966).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed on equipment of the Shared Research Center of the Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences (project no. RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Sorokin.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, D.N., Sorokin, N.I., Grebenev, V.V. et al. 75LiF + 25SmF3 Eutectic Composite and Ionic Conductivity of SmF3 near the Polymorphic α–β Transition. Crystallogr. Rep. 65, 468–472 (2020). https://doi.org/10.1134/S106377452003013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452003013X

Navigation