Skip to main content
Log in

Mössbauer Probe Diagnostics of the Properties of Quasi-Liquid Water Layer on the Aluminosilicate Surface of Natural Origin

  • PROCEEDINGS OF THE XV INTERNATIONAL CONFERENCE “MÖSSBAUER SPECTROSCOPY AND ITS APPLICATIONS”
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structure and properties of the quasi-liquid water layer in the “frozen water–clay mineral” system have been studied using a probe technique developed on the basis of the 57Fe Mössbauer isotope in two forms (Fe2+ and Fe3+). The elasticity parameters (shear modulus, Poisson’s ratio, and Grüneisen parameter) of the surface ice are estimated within the fractal geometry. The “Menger sponge"–"Cantor dust” transition with an increase in the layer thickness is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The term is due to the fact that the temperature behavior of the Mössbauer parameters differs from the case of “purely” crystalline phase and is typical of the amorphization onset in crystalline forms of ice.

REFERENCES

  1. R. Rosenberg, Phys. Today 58 (12), 50 (2005).

    Article  ADS  Google Scholar 

  2. S. D. Zakharov and I. V. Mosyagina, Cluster Structure of Water: A Review, Preprint of FIAN, Moscow, 2011, no. 11.

  3. A. A. Zalutskii and E. G. Stepanov, Physical Methods for Studying Solid-Phase Reagents and Catalysts (Izd-vo YaGTU, Yaroslavl’, 2005) [in Russian].

  4. A. A. Zalutskii, Pis’ma Zh. Tekh. Fiz. 40, 54 (2014).

    Google Scholar 

  5. A. A. Zalutskii, N. A. Sed’mov, E. N. Shkol’nikov, and V. V. Morozov, Bull. Russ. Acad. Sci.: Phys. 81 (7), 812 (2017).

    Article  Google Scholar 

  6. V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (Izd-vo IYaF NYaTs RK, Almaty, 2000) [in Russian].

  7. N. H. Fletcher, Philos. Mag. 7, 255 (1962).

    Article  ADS  Google Scholar 

  8. I. A. Ryzhkin and V. F. Petrenko, JETP 101, 317 (2005).

    Article  ADS  Google Scholar 

  9. A. A. Ananyan, Bound Water in Dispersed Systems, Isue 2 (Izd-vo MGU, Moscow, 1972) [in Russian], p. 106.

  10. V. I. Kvlividze, V. F. Kiselev, A. B. Kurzaev, and L. A. Ushakova, Surf. Sci. 44, 60 (1974).

    Article  ADS  Google Scholar 

  11. G. D. Koposov and A. V. Tyagunin, JETP Lett. 94, 374 (2011).

    Article  ADS  Google Scholar 

  12. J. G. Dash, Science 246, 1591 (1989).

    Article  ADS  Google Scholar 

  13. A. A. Zalutskii, Fizikokhim. Poverkhnosti Zashch. Mater. 52, 30 (2016).

    Google Scholar 

  14. L. V. Goncharova, T. G. Makeeva, and Yu. M. Egorov, Dielectric Properties of Dispersed Soils and Minerals and Phase Transitions of Bound Water (Universitetskaya Kniga, Moscow, 2012) [in Russian].

    Google Scholar 

  15. B. V. Deryagin and N. V. Churaev, New Properties of Liquids (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  16. A. N. Nevzorov, Meteorol. Gidrol., No. 1, 55 (1993).

  17. S. Engemann, H. Reichert, H. Dosch, et al., Phys. Rev. Lett. 92, 205701 (2004).

    Article  ADS  Google Scholar 

  18. A. A. Vlasov, Nonlocal Statistical Mechanics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  19. B. V. Derjaguin and N. V. Churaev, Nature 244, 430 (1973).

    Article  ADS  Google Scholar 

  20. I. A. Ryzhkin and V. F. Petrenko, JETP 108, 68 (2009).

    Article  ADS  Google Scholar 

  21. I. A. Ryzhkin, M. I. Ryzhkin, V. V. Sinitsyn, and A. V. Klyuev, JETP Lett. 106, 760 (2017).

    Article  ADS  Google Scholar 

  22. M. A. Sánchez, T. Kling, T. Ishiyama, et al., PNAS 114, 227 (2017).

    Article  Google Scholar 

  23. I. M. Sokolov, Usp. Fiz. Nauk 150, 221 (1986).

    Article  Google Scholar 

  24. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  25. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

  26. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975) [in Russian].

    MATH  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1965; Pergamon, New York, 1984).

  28. D. A. Konek, K. V. Voitsekhovski, Yu. M. Pleskachevskii, and S. V. Shil’ko, Mekh. Kompoz. Mater. Konstr. (Moscow) 10, 35 (2004).

    Google Scholar 

  29. V. V. Novikov and K. W. Wojciechowski, Fiz. Tverd. Tela 41, 2147 (1999).

    Google Scholar 

  30. Mössbauer Spectroscopy of Frozen Solutions, Ed. by A. Vértes and D. L. Nagy (Akadémiai Kiadó, Budapest, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zalutskii.

Additional information

Translated by A. Zolot’ko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalutskii, A.A. Mössbauer Probe Diagnostics of the Properties of Quasi-Liquid Water Layer on the Aluminosilicate Surface of Natural Origin. Crystallogr. Rep. 65, 371–375 (2020). https://doi.org/10.1134/S1063774520030360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030360

Navigation