Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T14:32:17.926Z Has data issue: false hasContentIssue false

Analysis of the Mineral Compositions of Swell-Shrink Clays From Guangxi Province, China

Published online by Cambridge University Press:  01 January 2024

ZHAOTIAN ZENG*
Affiliation:
College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China
HAIBO LU
Affiliation:
College of Civil and Architecture Engineering, Guilin University of Technology, Guilin 541004, China College of Civil Engineering, Hezhou University, Hezhou 542899, China
YANLIN ZHAO*
Affiliation:
College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
YINGHONG QIN
Affiliation:
College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
*
*E-mail address of corresponding author: zengzhaotian@glut.edu.cn
*E-mail address of corresponding author: zhaoyanlin@gxu.edu.cn

Abstract

Swell-shrink clays are widely distributed in the Guangxi province of southern China in the form of expansive soils and lateritic clays. They have high particle dispersion, poor permeability, and significant swell-shrink properties. In recent decades, a series of problems closely related to the physical-mechanical properties of the swell-shrink clays have been encountered in various engineering projects. Mineral composition is a critical factor affecting the physical-mechanical properties of these clays. However, determining accurately their mineral compositions is difficult because the analytical methods available are expensive, time consuming, and have a high possibility of errors. Therefore, identifying a method suitable for quantitatively analyzing the mineral composition of the swell-shrink clays is necessary. In the current study several swell-shrink clays, including two expansive soils and four lateritic clays, from the Guangxi region were investigated. Qualitative analytical methods such as differential thermal analysis (DTA) and X-ray diffraction (XRD) were conducted to identify the mineral composition of the soils. The results indicated that the expansive soils were composed mainly of quartz (Qz), montmorillonite (Mnt), illite (Ilt), and kaolinite (Kln). The Baise specimen also contained a certain amount of calcite (Cal), while the lateritic clays primarily contained Kln and goethite (Gth) as well as lesser amounts of Qz and gibbsite (Gbs). On the basis of the aforementioned results, rough quantitative analyses of the mineral compositions were conducted using X-ray fluorescence (XRF) and the Bogue method. The results indicated that the lateritic clay samples from Wuming, Guilin, and Liuzhou contained 70–80% Kln, while the Laibin lateritic clay was 50% Kln. The lateritic clays contained ~10% Gth. The expansive soils were 30–40%, 25–30%, and 10–15% of Ilt, Qz, and Mnt, respectively. Finally, the relationships between the mineral compositions, zeta potentials, and free swelling ratios are discussed briefly. This investigation indicated that the zeta potential was mainly related to the type and content of clay minerals in the soil when neutral water was used as the free solution (pH = 7). The correlation between the swelling index and the zeta potential of the expansive soils was greater than that of the lateritic clays, which indicated that the swelling properties of expansive soils were more affected by the clay mineral composition than those of the lateritic clays. The results provide a systematic method for the qualitative and quantitative analysis of the mineral composition of swell-shrink clays and primary data for studying how mineral composition affects the physical properties of swell-shrink clays in the study area.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, L. P. (1982). Accuracy and precision of phase analysis in Portland cement by Bogue, microscopic and X-ray diffraction methods. Cement and Concrete Research, 12, 381398.CrossRefGoogle Scholar
Arca, M. N., & Weed, S. B. (1966). Soil aggregation and porosity in relation to contents of free iron oxide and clay. Soil Science, 101, 164170.CrossRefGoogle Scholar
ASTM D 7928-2016 (2016). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. US-ASTM.Google Scholar
Chorom, M., & Rengasamy, P. (1995). Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. European Journal of Soil Science, 46, 657665.CrossRefGoogle Scholar
Dai, S. B., Huang, J., & Xia, L. (2005). Analysis of mineral composition and chemical components of expansive soil in North Hubei. Rock and Mechanics, 26, 300303.Google Scholar
Derjaguin, B.V. & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico-Chimica URSS, 14, 633.Google Scholar
DL/T 5357-2006 (2006). Code for Chemical Analysis Test of Rock and Soil for Hydropower and Water Conservancy Engineering. National Development and Reform Commission (NDRC) of the People's Republic of China, Beijing.Google Scholar
Erzin, Y., & Yukselen, Y. (2009). The use of neural networks for the prediction of zeta potential of Kln. Mathematical Geosciences, 41, 779797.CrossRefGoogle Scholar
Farahani, E., Emami, H., Fotovat, A., & Khorassani, R. (2019). Effect of different K: Na ratios in soil on dispersive charge, cation exchange and zeta potential. European Journal of Soil Science, 70, 311320.CrossRefGoogle Scholar
Feng, Y. Y., Zhang, Y. S., Qu, Y. X., & Huang, C. B. (2001). Mechanism of embankment defects caused by expansive soils in Baise Basin, Nankun railway. Chinese Journal of Geotechnical Engineering, 23, 463467.Google Scholar
GB/T 6730.67-2009. (2009). Iron Ores-Determination of Arsenic Content-Hydride Generation Atomic Absorption Spectrometric Method. Beijing: China National Standardization Management Committee.Google Scholar
Huang, B. L. (1987). Mineral Identification Manual of Differential Thermal Analysis. Beijing: Science Press.Google Scholar
JY/T 016-1996. (1996). General Rules for Wavelength Dispersive X-ray Fluorescence Spectrometry. Beijing: National education committee of the People's Republic of China.Google Scholar
Kaya, A., & Yukselen, Y. (2005). Zeta potential of clay minerals and quartz contaminated by heavy metals. Canadian Geotechnical Journal, 42, 12801289.CrossRefGoogle Scholar
Kong, L. W., Luo, H. X., & Yuan, J. X. (1995). Preliminary study on the effective cementation characteristics of the red clay. Chinese Journal of Geotechnical Engineering, 17, 4247.Google Scholar
Li, S. L., Shi, B., & Du, Y. J. (1997). Study on the engineering geology of expansive soil in China. Ziran Zazhi, 19, 8286.Google Scholar
Liao, S. W. (1984). Expansive Soil and Railway Engineering. Beijing: China Railway Press.Google Scholar
Lu, H. B., Zeng, Z. T., Yin, G. Q., & Zhao, Y. L. (2012). Analysis of mineral composition of red clay in Guangxi. Journal of Engineering Geology, 20, 651656.Google Scholar
Lu, H. B., Zeng, Z. T., Ge, R. D., & Zhao, Y. L. (2013a). Experimental study of tensile strength of swell-shrink soils. Rock and Soil Mechanics, 34, 615620.Google Scholar
Lu, H. B., Zeng, Z. T., Zhao, Y. L., Ge, R. D., Chen, C. Y., & Wei, C. F. (2013b). Function fitting on strength attenuation curve of swell-shrinking soils. Chinese Journal of Geotechnical Engineering, 35, 157162.Google Scholar
Luo, H. X. (1983). The effect of amorphous materials on the mechanical property and structure of soil. Rock and Mechanics, 4, 6974.Google Scholar
Madu, R. M. (1977). An investigation into the geotechnical and engineering properties of some laterites of Eastern Nigeria. Engineering Geology, 11, 101125.CrossRefGoogle Scholar
Marchuk, A., & Rengasamy, P. (2011). Clay behavior in suspension is related to the iconicity of clay-cation bonds. Applied Clay Science, 53, 754759.CrossRefGoogle Scholar
Mitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (3rd ed.). Hoboken, New Jersey, USA: John Wiley & Sons.Google Scholar
Moore, D. M., & Reynolds, R. C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals (2nd ed.). New York: Oxford University Press.Google Scholar
Norrish, K. (1954). Crystalline swelling of montmorillonite: Manner of swelling of montmorillonite. Nature, 173, 256257.CrossRefGoogle Scholar
Norrish, K., & Rausell-Colom, J. A. (1961). Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite. Clays and Clay Minerals, 10, 123149.CrossRefGoogle Scholar
Ofir, E., Oren, Y., & Adin, A. (2007). Elecro-flocculation: the effect of zeta potential on particle size. Desalination, 204, 3338.CrossRefGoogle Scholar
Qu, Y. X., Zhang, Y. S., Feng, Y. Y., & Zhang, J. G. (2002). Quantitative study on the clay mineral composition of expansive soils in China. Journal of Engineering Geology, 10, 416422.Google Scholar
Shao, W. M., Tan, L. R., Zhang, M. Y., & Hua, L. L. (1994). The relation between mineral composition and swelling character of swelling soil. Rock and Mechanics, 15, 1119.Google Scholar
SL 237-1999 (1999). Specification of Soil Test. Ministry of Water Resources of the People's Republic of China, Beijing.Google Scholar
Soil Mechanics teaching group of Department of Civil Engineering in Guangxi University (1977). A preliminary study on the evaluation index of expansion and contraction. Journal of Guangxi University (Natural Science Edition), 1, 2138.Google Scholar
Sparks, D. L. (1986). Soil Physical Chemistry. Boca Raton, Florida, USA: CRC Press.Google Scholar
Sun, D. A., Liu, W. J., & Lu, H. B. (2014). Soil-water characteristic curve of Guilin lateritic clay. Rock and Soil Mechanics, 35, 33453351.Google Scholar
Sun, D. A., Gao, Y., Zhou, A. N., & Sheng, D. C. (2016). Soil-water retention curves and microstructures of undisturbed and compacted Guilin lateritic clay. Bulletin of Engineering Geology and the Environment, 75, 781791.CrossRefGoogle Scholar
Tan, L. R. (1984). Quantitative analysis of clay minerals - A method study. Acta Mineralogical Sinica, 4, 7177.Google Scholar
Tan, L. R. (1997). Study on mechanism of expansion and shrinkage of the montmorillonite crystal. Rock and Mechanics, 18, 1318.Google Scholar
Tan, L. R., & Kong, L. W. (2001). Study on the swelling and shrinkage of montmorillonite crystal and its relationship with matrix suction. Science in China (Series D), 31, 119126.Google Scholar
Tan, L. R., & Kong, L. W. (2006). Special Geotechnical Engineering Soil Science. Beijing: Science Press.Google Scholar
Van Olphen, H. (1977). An Introduction to Clay Colloid Chemistry. New York: Wiley chapter 7.Google Scholar
Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the Stability of Lyophobic Colloid. Amsterdam: Elsevier.Google Scholar
Wang, J. Z. (1983). The effects of free iron oxides on the engineering properties of red clay. Chinese Journal of Geotechnical Engineering, 5, 147156.Google Scholar
Ye, Q. Y. (2017). A brief discussion on the differences between red clay and expansive soil in Guangxi province. Road Engineering, 2, 4850.Google Scholar
Yukselen-Aksoy, Y., & Kaya, A. (2011). A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environment Earth Science, 62, 697705.CrossRefGoogle Scholar
Zhang, R. K., & Fan, G. (2003). Quantitative analytic method and experiments of X-ray diffraction period of clay minerals. Uranium Geology, 19, 180185.Google Scholar
Zhu, Z.C., Li, J.W., Lin, F.L., Chen, F., & Sun, D.A. (2019). Experimental research on desorption curves of soil samples under different mineral compositions. Chinese Journal of Geotechnical Engineering, http://kns.cnki.net/kcms/detail/32.1124.TU.20190906.1031.020.html).Google Scholar