Skip to main content
Log in

Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Apps MG, Choi EH, Wheate NJ (2015) The state-of-play and future of platinum drugs. Endocr Relat Cancer 22(4):R219–233. https://doi.org/10.1530/erc-15-0237

    Article  CAS  PubMed  Google Scholar 

  2. Bowtell DD, Bohm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ Jr, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR (2015) Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15(11):668–679. https://doi.org/10.1038/nrc4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chapman-Rothe N, Curry E, Zeller C, Liber D, Stronach E, Gabra H, Ghaem-Maghami S, Brown R (2013) Chromatin H3K27me3/H3K4me3 histone marks define gene sets in high-grade serous ovarian cancer that distinguish malignant, tumor-sustaining and chemo-resistant ovarian tumor cells. Oncogene 32(38):4586–4592. https://doi.org/10.1038/onc.2012.477

    Article  CAS  PubMed  Google Scholar 

  4. Liu D, Zhang XX, Li MC, Cao CH, Wan DY, Xi BX, Tan JH, Wang J, Yang ZY, Feng XX, Ye F, Chen G, Wu P, Xi L, Wang H, Zhou JF, Feng ZH, Ma D, Gao QL (2018) C/EBPbeta enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun 9(1):1739. https://doi.org/10.1038/s41467-018-03590-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Long J, Fang WY, Chang L, Gao WH, Shen Y, Jia MY, Zhang YX, Wang Y, Dou HB, Zhang WJ, Zhu J, Liang AB, Li JM, Hu J (2017) Targeting HDAC3, a new partner protein of AKT in the reversal of chemoresistance in acute myeloid leukemia via DNA damage response. Leukemia 31(12):2761–2770. https://doi.org/10.1038/leu.2017.130

    Article  CAS  PubMed  Google Scholar 

  6. Cacan E (2016) Histone deacetylase-1-mediated suppression of FAS in chemoresistant ovarian cancer cells. Anticancer Res 36(6):2819–2826

    CAS  PubMed  Google Scholar 

  7. Cacan E (2017) Epigenetic regulation of RGS2 (regulator of G-protein signaling 2) in chemoresistant ovarian cancer cells. J Chemother 29(3):173–178. https://doi.org/10.1080/1120009x.2016.1277007

    Article  CAS  PubMed  Google Scholar 

  8. Castilho RM, Squarize CH, Almeida LO (2017) Epigenetic modifications and head and neck cancer: implications for tumor progression and resistance to therapy. Int J Mol Sci. https://doi.org/10.3390/ijms18071506

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gardner EE, Lok BH, Schneeberger VE, Desmeules P, Miles LA, Arnold PK, Ni A, Khodos I, de Stanchina E, Nguyen T, Sage J, Campbell JE, Ribich S, Rekhtman N, Dowlati A, Massion PP, Rudin CM, Poirier JT (2017) Chemosensitive relapse in small cell lung cancer proceeds through an EZH2-SLFN11 axis. Cancer Cell 31(2):286–299. https://doi.org/10.1016/j.ccell.2017.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huo H, Magro PG, Pietsch EC, Patel BB, Scotto KW (2010) Histone methyltransferase MLL1 regulates MDR1 transcription and chemoresistance. Cancer Res 70(21):8726–8735. https://doi.org/10.1158/0008-5472.Can-10-0755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Yu B, Deng P, Cheng Y, Yu Y, Kevork K, Ramadoss S, Ding X, Li X, Wang CY (2017) KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/beta-catenin signalling. Nat Commun 8:15146. https://doi.org/10.1038/ncomms15146

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu C, Yang D, Sabbatini ME, Colby AH, Grinstaff MW, Oberlies NH, Pearce C, Liu K (2018) Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 18(1):149. https://doi.org/10.1186/s12885-018-4061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Samulitis BK, Pond KW, Pond E, Cress AE, Patel H, Wisner L, Patel C, Dorr RT, Landowski TH (2015) Gemcitabine resistant pancreatic cancer cell lines acquire an invasive phenotype with collateral hypersensitivity to histone deacetylase inhibitors. Cancer Biol Ther 16(1):43–51. https://doi.org/10.4161/15384047.2014.986967

    Article  CAS  PubMed  Google Scholar 

  14. Staberg M, Rasmussen RD, Michaelsen SR, Pedersen H, Jensen KE, Villingshoj M, Skjoth-Rasmussen J, Brennum J, Vitting-Seerup K, Poulsen HS, Hamerlik P (2018) Targeting glioma stem-like cell survival and chemoresistance through inhibition of lysine-specific histone demethylase KDM2B. Mol Oncol 12(3):406–420. https://doi.org/10.1002/1878-0261.12174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cole AJ, Clifton-Bligh R, Marsh DJ (2015) Histone H2B monoubiquitination: roles to play in human malignancy. Endocr Relat Cancer 22(1):T19–33. https://doi.org/10.1530/erc-14-0185

    Article  CAS  PubMed  Google Scholar 

  16. Marsh DJ, Dickson KA (2019) Writing histone monoubiquitination in human malignancy—the role of RING finger E3 ubiquitin ligases. Genes 10(1):15. https://doi.org/10.3390/genes10010067

    Article  CAS  Google Scholar 

  17. Clague MJ, Coulson JM, Urbe S (2008) Deciphering histone 2A deubiquitination. Genome Biol 9(1):202. https://doi.org/10.1186/gb-2008-9-1-202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Machida S, Sekine S, Nishiyama Y, Horikoshi N, Kurumizaka H (2016) Structural and biochemical analyzes of monoubiquitinated human histones H2B and H4. Open Biol. https://doi.org/10.1098/rsob.160090

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7(2):113–119. https://doi.org/10.1038/nchembio.501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Braun S, Madhani HD (2012) Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Rep 13(7):619–630. https://doi.org/10.1038/embor.2012.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10(10):697–708. https://doi.org/10.1038/nrm2763

    Article  CAS  PubMed  Google Scholar 

  22. Marsh DJ, Shah JS, Cole AJ (2014) Histones and their modifications in ovarian cancer—drivers of disease and therapeutic targets. Front Oncol 4:144. https://doi.org/10.3389/fonc.2014.00144

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142(5):682–685. https://doi.org/10.1016/j.cell.2010.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723

    Article  CAS  PubMed  Google Scholar 

  25. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418(6897):498. https://doi.org/10.1038/nature00970

    Article  CAS  PubMed  Google Scholar 

  26. Ng HH, Xu RM, Zhang Y, Struhl K (2002) Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277(38):34655–34657. https://doi.org/10.1074/jbc.C200433200

    Article  CAS  PubMed  Google Scholar 

  27. Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418(6893):104–108. https://doi.org/10.1038/nature00883

    Article  CAS  PubMed  Google Scholar 

  28. Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, Muchardt C, Urlaub H, Brik A, Oren M, Fischle W (2013) Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep 4(3):601–608. https://doi.org/10.1016/j.celrep.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  29. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG (2009) RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137(3):459–471. https://doi.org/10.1016/j.cell.2009.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95. https://doi.org/10.1146/annurev-biochem-051710-134100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 40(5):689–701. https://doi.org/10.1016/j.molcel.2010.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu M, Wang PF, Lee JS, Martin-Brown S, Florens L, Washburn M, Shilatifard A (2008) Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol Cell Biol 28(24):7337–7344. https://doi.org/10.1128/mcb.00976-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Welsem T, Korthout T, Ekkebus R, Morais D, Molenaar TM, van Harten K, Poramba-Liyanage DW, Sun SM, Lenstra TL, Srivas R, Ideker T, Holstege FCP, van Attikum H, El Oualid F, Ovaa H, Stulemeijer IJE, Vlaming H, van Leeuwen F (2018) Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism. Nucleic Acids Res 46(21):11251–11261. https://doi.org/10.1093/nar/gky801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dickson KA, Cole AJ, Gill AJ, Clarkson A, Gard GB, Chou A, Kennedy CJ, Henderson BR, Fereday S, Traficante N, Alsop K, Bowtell DD, deFazio A, Clifton-Bligh R, Marsh DJ (2016) The RING finger domain E3 ubiquitin ligases BRCA1 and the RNF20/RNF40 complex in global loss of the chromatin mark histone H2B monoubiquitination (H2Bub1) in cell line models and primary high-grade serous ovarian cancer. Hum Mol Genet 25(24):5460–5471. https://doi.org/10.1093/hmg/ddw362

    Article  CAS  PubMed  Google Scholar 

  35. Minsky N, Shema E, Field Y, Schuster M, Segal E, Oren M (2008) Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10(4):483–488. https://doi.org/10.1038/ncb1712

    Article  CAS  PubMed  Google Scholar 

  36. Xie W, Nagarajan S, Baumgart SJ, Kosinsky RL, Najafova Z, Kari V, Hennion M, Indenbirken D, Bonn S, Grundhoff A, Wegwitz F, Mansouri A, Johnsen SA (2017) RNF40 regulates gene expression in an epigenetic context-dependent manner. Genome Biol 18(1):32. https://doi.org/10.1186/s13059-017-1159-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soule HD, Vazguez J, Long A, Albert S, Brennan M (1973) A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51(5):1409–1416

    Article  CAS  PubMed  Google Scholar 

  38. Domcke S, Sinha R, Levine DA, Sander C, Schultz N (2013) Evaluating cell lines as tumor models by comparison of genomic profiles. Nat Commun 4:2126. https://doi.org/10.1038/ncomms3126

    Article  CAS  PubMed  Google Scholar 

  39. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, Senz J, Yang W, Spillman MA, Cochrane DR, Shumansky K, Shah SP, Kalloger SE, Huntsman DG (2013) Type-specific cell line models for type-specific ovarian cancer research. PLoS One 8(9):e72162. https://doi.org/10.1371/journal.pone.0072162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius T, Avis T, Barthorpe S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironenko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Solomon H, Stephens P, Teague J, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Reinhold W, Weinstein JN, Stratton MR, Futreal PA, Wooster R (2006) Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5(11):2606–2612. https://doi.org/10.1158/1535-7163.mct-06-0433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D'Amico D, Bodner S, Oie HK, Linnoila RI, Mulshine JL, Minna JD et al (1992) p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7(1):171–180

    CAS  PubMed  Google Scholar 

  42. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  43. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53. https://doi.org/10.1038/nbt.2450

    Article  CAS  PubMed  Google Scholar 

  44. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. https://doi.org/10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fuchs G, Hollander D, Voichek Y, Ast G, Oren M (2014) Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res 24(10):1572–1583. https://doi.org/10.1101/gr.176487.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu Y (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ 10(4):400–403. https://doi.org/10.1038/sj.cdd.4401182

    Article  CAS  PubMed  Google Scholar 

  48. Dabin J, Fortuny A, Polo SE (2016) Epigenome maintenance in response to DNA damage. Mol Cell 62(5):712–727. https://doi.org/10.1016/j.molcel.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossetto D, Truman AW, Kron SJ, Cote J (2010) Epigenetic modifications in double-strand break DNA damage signaling and repair. Clin Cancer Res 16(18):4543–4552. https://doi.org/10.1158/1078-0432.Ccr-10-0513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY, Eppink B, Chung YM, Shalev G, Shema E, Shkedy D, Smorodinsky NI, van Vliet N, Kuster B, Mann M, Ciechanover A, Dahm-Daphi J, Kanaar R, Hu MC, Chen DJ, Oren M, Shiloh Y (2011) Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 41(5):529–542. https://doi.org/10.1016/j.molcel.2011.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jung I, Kim SK, Kim M, Han YM, Kim YS, Kim D, Lee D (2012) H2B monoubiquitylation is a 5′-enriched active transcription mark and correlates with exon-intron structure in human cells. Genome Res 22(6):1026–1035. https://doi.org/10.1101/gr.120634.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hooda J, Novak M, Salomon MP, Matsuba C, Ramos RI, MacDuffie E, Song M, Hirsch MS, Lester J, Parkash V, Karlan BY, Oren M, Hoon DS, Drapkin R (2019) Early loss of Histone H2B monoubiquitylation alters chromatin accessibility and activates key immune pathways that facilitate progression of ovarian cancer. Cancer Res 79(4):760–772. https://doi.org/10.1158/0008-5472.CAN-18-2297

    Article  CAS  PubMed  Google Scholar 

  53. Technau A, Wolff A, Sauder C, Birkner N, Brandner G (2001) p53 in SV40-transformed DNA-damaged human cells binds to its cognate sequence but fails to transactivate target genes. Int J Oncol 18(2):281–286

    CAS  PubMed  Google Scholar 

  54. Wu C, Cui Y, Liu X, Zhang F, Lu LY, Yu X (2020) The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. J Mol Cell Biol 12(2):113–124

    Article  CAS  PubMed  Google Scholar 

  55. Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13(6):941–950. https://doi.org/10.1038/sj.cdd.4401925

    Article  CAS  PubMed  Google Scholar 

  56. Albertella MR, Green CM, Lehmann AR, O'Connor MJ (2005) A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res 65(21):9799–9806. https://doi.org/10.1158/0008-5472.Can-05-1095

    Article  CAS  PubMed  Google Scholar 

  57. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310. https://doi.org/10.1038/sj.onc.1210422

    Article  CAS  PubMed  Google Scholar 

  58. Wang J, Zhou JY, Wu GS (2007) ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res 67(24):11933–11941. https://doi.org/10.1158/0008-5472.Can-07-5185

    Article  CAS  PubMed  Google Scholar 

  59. Persons DL, Yazlovitskaya EM, Cui W, Pelling JC (1999) Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res 5(5):1007–1014

    CAS  PubMed  Google Scholar 

  60. Hasegawa J, Sue M, Yamato M, Ichikawa J, Ishida S, Shibutani T, Kitamura M, Wada T, Agatsuma T (2016) Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol Ther 17(11):1158–1167. https://doi.org/10.1080/15384047.2016.1235663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moorehead RA, Singh G (2000) Influence of the proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol 59(4):337–345

    Article  CAS  PubMed  Google Scholar 

  62. Kim KK, Han A, Yano N, Ribeiro JR, Lokich E, Singh RK, Moore RG (2015) Tetrathiomolybdate mediates cisplatin-induced p38 signaling and EGFR degradation and enhances response to cisplatin therapy in gynecologic cancers. Sci Rep 5:15911. https://doi.org/10.1038/srep15911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Cao J, Meng Y, Qu C, Shen F, Xu L (2018) Overexpression of xeroderma pigmentosum group C decreases the chemotherapeutic sensitivity of colorectal carcinoma cells to cisplatin. Oncol Lett 15(5):6336–6344. https://doi.org/10.3892/ol.2018.8127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D (2006) Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125(4):703–717. https://doi.org/10.1016/j.cell.2006.04.029

    Article  CAS  PubMed  Google Scholar 

  65. Kaller M, Gotz U, Hermeking H (2017) Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity. Oncotarget 8(61):102783–102800. https://doi.org/10.18632/oncotarget.22245

    Article  PubMed  PubMed Central  Google Scholar 

  66. Marin-Bejar O, Mas AM, Gonzalez J, Martinez D, Athie A, Morales X, Galduroz M, Raimondi I, Grossi E, Guo S, Rouzaut A, Ulitsky I, Huarte M (2017) The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol 18(1):202. https://doi.org/10.1186/s13059-017-1331-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakamura K, Kato A, Kobayashi J, Yanagihara H, Sakamoto S, Oliveira DV, Shimada M, Tauchi H, Suzuki H, Tashiro S, Zou L, Komatsu K (2011) Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 41(5):515–528. https://doi.org/10.1016/j.molcel.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  68. Clouaire T, Rocher V, Lashgari A, Arnould C, Aguirrebengoa M, Biernacka A, Skrzypczak M, Aymard F, Fongang B, Dojer N, Iacovoni JS, Rowicka M, Ginalski K, Cote J, Legube G (2018) Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol Cell 72(2):250–262.e256. https://doi.org/10.1016/j.molcel.2018.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Helmlinger D, Tora L (2017) Sharing the SAGA. Trends Biochem Sci 42(11):850–861. https://doi.org/10.1016/j.tibs.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr Michael Hahn is acknowledged for the initial cloning of wt p53.

Funding

This project was supported by a Research Scholar Award from the Sydney Vital Translational Cancer Research Centre, Cancer Institute NSW [to A.J.C.] and project Grant from the Cancer Council NSW [RG13-10; to D.J.M.]. A.J.C. was supported by an Australian Postgraduate Award and Northern Clinical School Top-Up Scholarship. D.J.M. was supported by the Australian Research Council (ARC) (ARC Future Fellowship [FT100100489]) and National Health and Medical Research Council (NHMRC) (NHMRC Senior Research Fellowship [APP1004799]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Marsh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 68 kb)

18_2020_3552_MOESM2_ESM.jpg

Suppl. Fig. 1 Cisplatin dose curves and maximal inhibitory concentrations (IC50, IC75, IC80) in µM for A2780, HEY1, MCF7, SKOV3, H1299, Kuramochi and OVCAR-3 (N = 3-4) (JPG 2248 kb)

18_2020_3552_MOESM3_ESM.jpg

Suppl. Fig. 2 University of California Santa Cruz (UCSC) genome browser hg19 images of representative H2Bub1-enriched genes in response to cisplatin. a, POLH1, b, EGR1 and c, TOB1. RNA-seq and ChIP-seq signals are shown, as is the layered image of the active transcription mark H3K27Ac of seven cell lines from ENCODE. Exonic regions are marked by boxes in RefSeq tracks. (JPG 3755 kb)

18_2020_3552_MOESM4_ESM.jpg

Suppl. Fig. 3 STRING analysis of 132 H2Bub1 enriched genes in A2780 cells following treatment with an IC75 dose of cisplatin for 24 h. Strings represent known interactions from either curated databases (aqua) or that have been experimentally determined (magenta); predicted interactions (red, green or blue), or other interactions from text mining (lime), co-expression (black) or protein homology (purple) (JPG 2921 kb)

18_2020_3552_MOESM5_ESM.jpg

Suppl. Fig. 4 Increased H2Bub1 enrichment in the coding region of p53 target genes in response to cisplatin [IC75 or IC80 dose levels] is observed in wild-type p53 cells (MCF7) compared to mutant p53 cells (Kuramochi). a, MCF7 wt p53 cells treated with saline (sal.) or cisplatin (cisp.; IC75 dose, Suppl. Fig. 1) for 24 h underwent ChIP with anti-H2Bub1 or IgG antibodies followed by qRT-PCR using either primers within (+) or downstream (-) of the coding regions of p53 target genes. Data within replicates was normalized to the experimental mean and presented as mean ± SEM (N = 5) analyzed using one-way ANOVA with Tukey’s post-hoc test. Right hand panel shows expression of p53 target genes in MCF7 cells in response to an IC75 dose of cisplatin (c), or saline (s) for 24 h (N = 4; data expressed relative to saline treated cells (one-sample t test); GOI, gene of interest). b, Kuramochi mutant p53 cells treated with saline or an IC80 dose of cisplatin (Suppl. Fig. 1) for 24 h underwent ChIP and qRT-PCR as above (N = 3). Right hand panel shows expression of p53 target genes in Kuramochi cells in response to an IC80 dose of cisplatin as above (N = 4). (* P < 0.05, ** P < 0.005) (JPG 1115 kb)

18_2020_3552_MOESM6_ESM.jpg

Suppl. Fig. 5 Inhibition of transcriptional elongation after DNA damage inhibits H2Bub1 enrichment at p53 target genes. a, Expression levels of MDM2 were assessed relative to the reference gene HMBS in A2780 cells treated with saline or IC75 doses of cisplatin (9.9 µM) for 16 h, followed by treatment with DMSO (vehicle) or 50 µM DRB for 5 h. Data within replicates (N=3) was normalized to the saline DMSO treatment and presented as mean ± SEM analyzed using one-way ANOVA with Tukey’s post-hoc test. Specific reduction in MDM2 levels was observed in cells treated with cisplatin and DRB compared to cells treated with cisplatin and DMSO (vehicle) (** P < 0.001). b, ChIP-qPCR data showing that H2Bub1 enrichment is significantly decreased in A2780 cells following DNA damage with cisplatin and treatment with the transcriptional inhibitor DRB in p53 target genes (+, primers within the coding region; -, primers downstream of the coding region). Data within replicates was normalized to the experimental mean and presented as mean ± SEM (N = 3) analyzed using one-way ANOVA with Tukey’s post-hoc test (** P < 0.001) (JPG 705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, A.J., Dickson, KA., Liddle, C. et al. Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cell. Mol. Life Sci. 78, 1011–1027 (2021). https://doi.org/10.1007/s00018-020-03552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03552-5

Keywords

Navigation