Skip to main content
Log in

Synthesis of a Magnetic Fe3O4/RGO Composite for the Rapid Photo-Fenton Discoloration of Indigo Carmine Dye

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the last years, dye wastewater pollution became a major problem due to its toxicity and environmental restrictions. Indigo carmine is an indigoid dye that is largely used, and it is known by its toxicity and stability. In this work, we synthesized a magnetite/reduced graphene oxide (Fe3O4/RGO) composite with approximately 90%wt of Fe3O4 and used in the indigo carmine dye photo-Fenton discoloration (accompanied by UV–Vis spectrometry analysis). By using scanning electron microscopy (SEM), X-ray diffractometry (XRD), Laser Raman Spectroscopy (LRS), Magnetization Curves (VSM), and X-ray photoelectron spectroscopy (XPS) analyses it was observed that Fe3O4 particles of ~ 21 nm were successfully anchored on reduced graphene sheets. Zeta potential showed that the Fe3O4/RGO composite has a less negative electrostatic behavior in ultrapure water (− 46.9 mV) than the bare RGO (− 77.7 mV), promoting the attraction of indigo carmine molecule. Magnetic studies proved the ferromagnetic character of the composite with a saturation magnetization of 43 emu/g, thus promoting the easy separation from the reaction medium. In the first 5 min of reaction with the composite, the solution was completely discolored. The composite was recovered, and its reuse also showed total discoloration in the first 30 min of reaction. After first indigo carmine discoloration cycle, XPS results showed that Fe3+/Fe2+ atomic ratio was maintained, which can explain the total discoloration in the second cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226

    CAS  Google Scholar 

  2. Tho NTM, Huy BT, Khanh DNN, Thang NQ, Dieu NTP, Duong BD, Phuong NTK (2018) Mechanism of visible-light photocatalytic mineralization of indigo carmine using ZnBi2O4-Bi2S3 composites. Chem Sel 3:9986–9994

    Google Scholar 

  3. Mittal A, Mittal J, Kurup L (2006) Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. J Hazard Mater B137:591–602

    Google Scholar 

  4. Barka N, Assabbane A, Nounah A, Ichou YA (2008) Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibers. J Hazard Mater 152:1054–1059

    CAS  Google Scholar 

  5. Jenkins CL (1978) Textile dyes are potential hazards. Arch Environ Health 40:7–12

    Google Scholar 

  6. Boruah PK, Dipankar BJ, Handique J, Sharma P, Sengupta P, Das MR (2015) Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: a comparative study. J Environ Chem Eng 3(3):1974–1985

    CAS  Google Scholar 

  7. Lin SH, Lin CM (1993) Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res 27:1743–1748

    CAS  Google Scholar 

  8. Hai FI, Yamamoto K, Nakajima F, Fukushi K, Nghiem LD, Price WE, Jin B (2013) Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour. Bioresour Technol 141:29–34

    CAS  Google Scholar 

  9. Daud NK, Hameed BH (2011) Acid Red 1 dye decolorization by heterogeneous Fenton-like reaction using Fe/kaolin catalyst. Desalination 269:291–293

    CAS  Google Scholar 

  10. Maksoud MIAA, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096

    Google Scholar 

  11. Li H, Li Y, Xiang L, Huang Q, Qiu J, Zhang H, Sivaiah MV, Baron F, Barrault J, Petit S, Valange S (2015) Heterogeneous photo-Fenton decolorization of orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation. J Hazard Mater 287:32–41

    CAS  Google Scholar 

  12. Shestakova M, Sillanpää M (2013) Removal of dichloromethane from ground and wastewater: a review. Chemosphere 93(7):1258–1267

    CAS  Google Scholar 

  13. Sreeja PH, Sosamony KJ (2016) A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment. Proc Tech 24:217–223

    Google Scholar 

  14. Li Y, Zhang FS (2010) Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash. Chem Eng J 158:148–153

    CAS  Google Scholar 

  15. Liu Y, Jin W, Zhao Y, Zhang G, Zhang W (2017) Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal B 206:642–652

    CAS  Google Scholar 

  16. See TP, Pandikumar A, Ngee LH, Ming HN, Hua CC (2014) Magnetically separable reduced graphene oxide/iron oxide nanocomposite materials for environmental remediation. Catal Sci Technol 4:4396–4405

    Google Scholar 

  17. Hsieh S, Lin PY (2012) FePt nanoparticles as heterogeneous Fenton-like catalysts for hydrogen peroxide decomposition and the decolorization of methylene blue. J Nanopart Res 14:956–966

    Google Scholar 

  18. Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system. Sci Rep 5:10632–10642

    Google Scholar 

  19. Ji N-J, Kohn T (2013) Virus removal and inactivation by iron (hydr)oxidemediated Fenton-like processes under sunlight and in the dark. Photochem Photobiol Sci 12:1596–1605

    Google Scholar 

  20. Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457–2469

    CAS  Google Scholar 

  21. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  22. Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Comm 30:316–327

    CAS  Google Scholar 

  23. Zhang Y, Pan C (2011) TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci 46:2622–2626

    CAS  Google Scholar 

  24. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong C, Eng A, Bonanni A, Pumera M (2016) Graphene and its electrochemistry—an update. Chem Soc Rev 45:2458–2493

    Google Scholar 

  25. Jiang X, Li L, Cui Y, Cui F (2017) New branch on old tree: green-synthesized RGO/Fe3O4 composite as a photo-Fenton catalyst for rapid decomposition of methylene blue. Ceram Int 43(16):14361–14368

    CAS  Google Scholar 

  26. Arshad A, Iqbal J, Ahmad I, Israr M (2018) Graphene/Fe3O4 nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange. Ceram Int 44(3):2643–2648

    CAS  Google Scholar 

  27. Qin Y, Long M, Tan B, Zhou B (2014) RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a Fenton-like reaction. Nano-Micro Lett 6(2):125–135

    CAS  Google Scholar 

  28. Yao Y, Qin J, Cai Y, Wei F, Lu F, Wang S (2014) Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation. Environ Sci Pollut Res 21(12):7296–7306

    CAS  Google Scholar 

  29. Agorku ES, Mamo MA, Mamba BB, Pandey AC, Mishra AK (2015) Cobalt-doped ZnS-reduced graphene oxide nanocomposite as an advanced photocatalytic material. J Porous Mater 22:47–56

    CAS  Google Scholar 

  30. Vautier M, Guillard C, Herrmann JM (2001) Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine. J Catal 201:46–59

    CAS  Google Scholar 

  31. Othman I, Mohamed RM, Ibrahem FM (2007) Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2. J Photoch Photobio A 189:80–85

    CAS  Google Scholar 

  32. Galindo C, Jacques P, Kalt A (2001) Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). J Photochem Photobiol A 141:47–56

    CAS  Google Scholar 

  33. Qiu B, Li Q, Shen B, Xing M (2016) Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl Catal B 183:216–223

    CAS  Google Scholar 

  34. Soares CPP, Baptista RL, Cesar DV (2018) Solvothermal reduction of graphite oxide using alcohols. Mater Res-Ibero-Am J 21(1):e20170726

    Google Scholar 

  35. CasaXPS: Processing software for XPS, AES, SIMS and more (2018). http://www.casaxps.com. Accessed 5, Dec 2019

  36. Costa GP, Rafael RA, Soares JCS, Gaspar AB (2019) Synthesis and characterization of ZnO-Nb2O5 catalysts for photodegradation of bromophenol blue. Catal Today. https://doi.org/10.1016/j.cattod.2019.04.059

    Article  Google Scholar 

  37. Ferreira FN, Benevides AP, Cesar DV, Luna AS, Gois JS (2020) Magnetic solid-phase extraction and pre-concentration of 17β-estradiol and 17α-ethinylestradiol in tap water using maghemitegraphene oxide nanoparticles and determination using HPLC with fluorescence detector. Microchem J. https://doi.org/10.1016/j.microc.2020.104947

    Article  Google Scholar 

  38. Babu CM, Vinodh R, Selvamani A, Kumar KP, Parveen AS, Thirukumaran P, Srinivasan VV, Balasubramaniam R, Ramkumar V (2017) Organic functionalized Fe3O4/RGO nanocomposites for CO2 adsorption. J Environ Chem Eng 5:2440–2447

    CAS  Google Scholar 

  39. Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887

    CAS  Google Scholar 

  40. Rufuss DDW, Iniyan S, Suganthi L, Daviesc PA (2017) Low mass fraction impregnation with graphene oxide (GO) enhances thermo-physical properties of paraffin for heat storage applications. Thermochim Acta 655:226–233

    Google Scholar 

  41. Shalaby A, Nihtianova D, Markov P, Staneva AD, Iordanova RS, Dimitriev YB (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg Chem 47(1):291–295

    Google Scholar 

  42. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427

    CAS  Google Scholar 

  43. Haneef M, Saleem H, Habib A (2017) Use of graphene nanosheets and barium titanate as fillers in PMMA for dielectric applications. Synth Met 223:101–106

    CAS  Google Scholar 

  44. Boruah PK, Sharma B, Karbhal I, Shelke MV, Das MR (2017) Ammonia modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J Hazard Mater 325:90–100

    CAS  Google Scholar 

  45. Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem Eng J 184:326–332

    CAS  Google Scholar 

  46. Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3(5):339–349

    CAS  Google Scholar 

  47. Kim HK, Aravindan V, Roh MHK, Lee K, Jung MH, Madhavi S, Roh KC, Kim KB (2017) Exploring high-energy Li-I(r)on batteries and capacitors with conversion-type Fe3O4-rGO as the negative electrode. ChemElectroChem 4:2626–2633

    CAS  Google Scholar 

  48. Fan W, Zang C (2013) Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. J Mater Res 28(4):611–619

    CAS  Google Scholar 

  49. Hu C, Xue J, Dong L, Jian Y, Wang X, Qu L, Dai L (2016) Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10(1):1325–1332

    CAS  Google Scholar 

  50. Latorre-Sanchez M, Primo A, Garcia H (2012) Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. J Mater Chem 22(21373):21375

    Google Scholar 

  51. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    CAS  Google Scholar 

  52. Choi SM, Seo MH, Kim HJ, Kim WB (2011) Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon 49:904–909

    CAS  Google Scholar 

  53. Beattie IR, Gilson TR (1970) The single-crystal Raman spectra of nearly opaque materials. Iron(ii1) oxide and chromium(i1i) oxide. J Chem Sci A 5:980–986

    Google Scholar 

  54. Verble JL (1974) Temperature-dependent light-scattering studies of the Verwey transition and electronic disorder in magnetite. Phys Rev B 9(12):5236–5248

    CAS  Google Scholar 

  55. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174:424–430

    CAS  Google Scholar 

  56. Madhuvilakku R, Alagar S, Mariappan R, Piraman S (2017) Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sensor Actuat B 253:879–892

    CAS  Google Scholar 

  57. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    CAS  Google Scholar 

  58. Kubelka P, Munk F (1931) Ein Beintrag zur Optik der Farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  59. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B 15:627–637

    CAS  Google Scholar 

  60. Strehlow WH, Cook EL (1973) Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J Phys Chem Ref Data 2:163–200

    CAS  Google Scholar 

  61. Ghandoor HE, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745

    Google Scholar 

  62. Kulkarni SA, Sawadh PS, Palei PK, Kokate KK (2013) Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 40:1945–1949

    Google Scholar 

  63. Agorku ES, Mamo MA, Mamba BB, Pandeu AC, Mishra AK (2015) Palladium-decorated zinc sulfide/reduced graphene oxide nanocomposites for enhanced visible light-driven photodegradation of indigo carmine. Mater Sci Semicon Proc 33:119–126

    CAS  Google Scholar 

  64. Huang H, Li Z, She J, Wang W (2012) Oxygen density dependent band gap of reduced graphene oxide. J Appl Phys 111(5):054317

    Google Scholar 

  65. Aleboyeh A, Aleboyeh H, Moussa Y (2003) Decolorisation of acid blue 74 by ultraviolet/H2O2. Environ Chem Lett 1:161–164

    CAS  Google Scholar 

  66. Quartarone G, Bellomi T, Zingales A (2003) Inhibition of copper corrosion by isatin in aerated 0.5 M H2SO4. Corros Sci 45:715–733

    CAS  Google Scholar 

  67. Zaied M, Chutet E, Peulon S, Bellakhal N, Desmazières B, Dachraoui CA (2011) Spontaneous oxidative degradation of indigo carmine by thin films of birnessite electrodeposited onto SnO2. Appl Catal B 107:42–51

    CAS  Google Scholar 

  68. Flox C, Ammar S, Arias C, Brillas E, Zavala AVV, Abdelhedi R (2006) Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B 67:93–104

    CAS  Google Scholar 

  69. Ammar S, Abdelhedi R, Flox C, Arias C, Brillas E (2006) Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. Environ Chem Lett 4(4):229–233

    CAS  Google Scholar 

  70. Torres IC, Miranda MGM, Gallegos SMM, Juárez JCG, Morales GR, Martínez FJI, Escutia PI (2019) Heterogeneous photo-Fenton treatment for degradation of indigo carmine dye. MRS Adv. https://doi.org/10.1557/adv.2019.451

    Article  Google Scholar 

  71. Khanh DNN, Tho NTM, Thang NQ, Tien NT, Phong CT, Cang MH, Phuong NTK (2019) Synthesis, characterization and photocatalytic activity of novel mixed metal oxides/reduced graphene oxide hybrid catalysts. Vietnam J Sci Technol 57:575–584

    Google Scholar 

  72. Kurt BZ, Durmus Z, Durmus A (2016) Preparation and characterization of platinum (Pt) and palladium (Pd) nanoparticle decorated graphene sheets and their utilization for the elimination of basic fuchsin and indigo carmine dyes. Solid State Sci 51:51–58

    CAS  Google Scholar 

  73. Coelho MG, Lima GM, Augusti R, Maria DA, Ardisson JD (2010) New materials for photocatalytic degradation of indigo carmine-synthesis, characterization and catalytic experiments of nanometric tin dioxide-based composites. Appl Catal B 96:67–71

    CAS  Google Scholar 

  74. Secula M, Vajda A, Agnon B, Warmont F, Mamaliga I (2019) Photo-Fenton-peroxide process using FE (II)-embedded composites based on activated carbon: characterization of catalytic tests. Can J Chem Eng 98(3):650–658

    Google Scholar 

  75. Yao Y, Qin J, Cai Y, Wei F, Lu F, Wang S (2014) Facile synthesis of magnetic ZnFe2O4–reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible irradiation. Environ Sci Pollut Res 21:7296–7306

    CAS  Google Scholar 

  76. Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S (2012) Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82-. J Am Chem Soc 134:19572–19575

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kinetics and Catalysis Laboratory (LCC/UERJ) staff for the XRD analyses, the Polymeric Materials Technology Laboratory (LAMAP/DIPCM/INT) staff for the TGA analyses, the Center of Characterization in Nanotechnology for Materials and Catalysis (CENANO/INT) for the SEM, FESEM and Dr. Fabiana M.T. Mendes for the XPS analysis, CBPF for the VSM measurements and Felipe J.L. Silveira for the RAMAN analyses at Catalysis Laboratory (LACAT/DICAP/INT). The authors also acknowledge Dr. Eduardo Lima (Laboratory of Interfacial Phenomena and Thermodynamics—LaFIT/UERJ) for the zeta potential analysis. The authors thank SisNano/MCTIC (442604/2019-0) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre B. Gaspar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.H.A., Siciliano, P.H.C., Alves, O.C. et al. Synthesis of a Magnetic Fe3O4/RGO Composite for the Rapid Photo-Fenton Discoloration of Indigo Carmine Dye. Top Catal 63, 1017–1029 (2020). https://doi.org/10.1007/s11244-020-01277-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01277-0

Keywords

Navigation