Skip to main content

Advertisement

Log in

Future water availability from the western Karakoram under representative concentration pathways as simulated by CORDEX South Asia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Employing a fully distributed hydrological model of SPHY (spatial processes in hydrology), we assessed the future water availability from a highly glacierized basin of Hunza in the western Karakoram under plausible climates as projected by the representative concentration pathways (RCPs). We successfully calibrate and validate the SPHY model for the periods 1994–1997 and 1997–2000 respectively using three high-altitude representative meteorological stations from the Water and Power Development Authority (WAPDA), Pakistan. Then, we run the model for near- (2007–2036), mid- (2037–2066), and far-future (2067–2096) climate projections under three different RCP scenario, i.e., RCP2.6, RCP4.5, and RCP8.5. Each scenario includes four high-resolution (~ 50 km) climate experiments that are obtained from dynamically downscaling the Coupled Model Inter-comparison Project Phase 5 (CMIP5) experiments under the framework of the Coordinated Regional Climate Downscaling Experiments (CORDEX) for South Asia. The SPHY model projects a substantial increase in the ensemble mean discharges throughout the 21st century under all RCP scenarios. Such an increase is dominated by the enhanced glacier melt contribution under the high warming scenario of RCP8.5. Besides featuring a declining trend, snowmelt contribution will also remain higher than that of the historical period throughout the 21st century and under all RCPs. Our flow duration curve analysis suggests that high and median flows are projected to increase while low flows are projected to decrease in the future. These findings provide invaluable insights into the uncertainty spectrum of the water availability from the western Karakoram across envisaged future climates, which will be supportive in better managing the downstream water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar M, Ahmad N, Booij MJ (2009) Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrol Earth Syst Sci 13(7):1075–1089. https://doi.org/10.5194/hess-13-1075

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper, 56

  • Archer DR (2003) Contrasting hydrological regimes in the upper Indus Basin. J Hydrol 274:198–210

    Article  Google Scholar 

  • Archer DR, Forsythe N, Fowler HJ, Shah SM (2010) Sustainability of water resources management in the Indus Basin under changing climatic and socioeconomic conditions. Hydrol Earth Syst Sci Discuss 7:1883–1191

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian Earth System Model, NorESM1-M – Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Bernhardt M Schulz K (2010) SnowSlide: a simple routine for calculating gravitational snow transport. Geophys Res Lett 37: L11502. doi: https://doi.org/10.1029/2010GL043086

  • Bocchiola D, Diolaiuti G, Soncini A, Mihalcea C, D’Agata C, Mayer C, Lambrecht A, Rosso R, Smiraglia C (2011) Prediction of future hydrological regimes in poorly gauged high-altitude basins: the case study of the upper Indus, Pakistan. Hydrol Earth Syst Sci 15:2059–2075. https://doi.org/10.5194/hess-15-2059-2011

    Article  Google Scholar 

  • Bonekamp PNJ, de Kok RJ, Collier E, Immerzeel WW (2019) Contrasting meteorological drivers of the glacier mass balance between the Karakoram and Central Himalaya. Front Earth Sci 7(107). https://doi.org/10.3389/feart.2019.00107

  • Briscoe J, Qamar U (2007) Pakistan’s water economy running dry, Oxford University Press, Karachi, Commissioned by World Bank

  • De Boer F (2016) HiHydroSoil: a high resolution soil map of hydraulic properties (Version 1.2). Report Future Water 134

  • De Kok RJ, Tuinenburg OA, Bonekamp PNJ, Immerzeel WW (2018) Irrigation as a potential driver for anomalous glacier behavior in high mountain Asia. Geophys Res Lett 45:2047–2054. https://doi.org/10.1002/2017GL076158

    Article  Google Scholar 

  • Defourny P, Vancutsem C, Bicheron P, Brockmann C, Nino F, Schouten L et al (2006) GLOBCOVER: a300 m global land cover product for 2005 using ENVISAT MERIS time series. Proceedings of ISPRS Commission VII Mid-Term Symposium: Remote Sensing: from Pixels to Processes, Enschede (NL) 8–11 May 2006

  • Devak M, Dhanya CT (2017) Sensitivity analysis of hydrological models: review and way forward. J Water Clim Chang 8(4):557–575. https://doi.org/10.2166/wcc.2017.149

    Article  Google Scholar 

  • ESGF-DKRZ (2014) CORDEX simulations output, Earth System Grid Federation hosted by the German Climate Computing Centre. https://esgf-data.dkrz.de/search/cordex-dkrz/

  • Fowler HJ, Archer DR (2006) Conflicting signals of climate change in the upper Indus basin. J Clim 19:4276–4292

    Article  Google Scholar 

  • Garee K, Chen X, Bao A, Wang Y, Meng F (2017) Hydrological modeling of the upper Indus basin: a case study from a high-altitude glacierized catchment Hunza. Water 9:17. https://doi.org/10.3390/w9010017

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99. https://doi.org/10.13031/2013.26773

    Article  Google Scholar 

  • Hassan M, Du P, Jia S, Iqbal W, Mahmood R, Ba W (2015) An assessment of the South Asian summer monsoon variability for present and future climatologies using a high resolution regional climate model (RegCM4.3) under the AR5 scenarios. Atmosphere 6(11):1833–1857. https://doi.org/10.3390/atmos6111833

    Article  Google Scholar 

  • Hassan M, Du P, Mahmood R, Jia S, Iqbal W (2019) Stream-flow response to projected climate changes in the Northwestern upper Indus basin based on Regional Climate Model (RegCM4.3) simulations. J Hydro Environ Res 27(32-49). https://doi.org/10.1016/j.jher.2019.08.002

  • Hasson S (2016a) Seasonality of precipitation over Himalayan watersheds in CORDEX South Asia and their driving. Atmosphere 7:1–29. https://doi.org/10.3390/atmos7100123

    Article  Google Scholar 

  • Hasson S (2016b) Future water availability from Hindukush-Karakoram-Himalaya upper Indus basin under conflicting climate change scenarios. Climate 4(3):1–28. https://doi.org/10.3390/cli4030040

    Article  Google Scholar 

  • Hasson S, Böhner J (2019) Hydrological cycle over Indus basin at monsoon margins: present and future. In: Indus River Basin: water security and sustainability. Elsevier, p 245-264. https://doi.org/10.1016/B978-0-12-812782-7.00012-6

  • Hasson S, Lucarini V, Pascale S (2013) Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 4:199–217. https://doi.org/10.5194/esd-4-199-2013

    Article  Google Scholar 

  • Hasson S, Lucarini V, Pascale S, Bohner J (2014a) Seasonality of the hydrological cycle in major South and Southeast Asian River Basins as simulated by PCMDI / CMIP3 experiments. Earth Syst Dyn 5:67–87. https://doi.org/10.5194/esd-5-67-2014

    Article  Google Scholar 

  • Hasson S, Lucarini V, Khan MR, Petitta M, Bolch T, Gioli G (2014b) Early 21st century snow cover state over the western river basins of the Indus River system. Hydrol Earth Syst Sci 18(10):4077–4100. https://doi.org/10.5194/hess-18-4077-2014

    Article  Google Scholar 

  • Hasson S, Pascale S, Lucarini V, Böhner J (2016) Seasonal cycle of precipitation over major river basins in South and Southeast Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos Res 180:42–63. https://doi.org/10.1016/j.atmosres.2016.05.008

    Article  Google Scholar 

  • Hasson S, Böhner J, Lucarini V (2017) Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin. Earth Syst Dyn 8:337–355. https://doi.org/10.5194/esd-8-337-2017

    Article  Google Scholar 

  • Hasson S, Böhner J, Chishtie F (2018) Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin. Clim Dyn 52:777–798. https://doi.org/10.1007/s00382-018-4160-0

    Article  Google Scholar 

  • Hasson S, Saeed F, Böhner J, Schleussner C-F (2019, 2019) Water availability in Pakistan from Hindukush-Karakoram-Himalayan watersheds at 1.5°C and 2°C Paris Agreement Targets. Adv Water Resour. https://doi.org/10.1016/j.advwatres.2019.06.010

  • Hayat H, Akbar TA, Tahir AA, Hassan QK, Dewan A, Irshad M (2019) Simulating current and future river-flows in the Karakoram and Himalayan regions of Pakistan using snowmelt-runoff model and RCP scenarios. Water 11(4):761

  • Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A et al (2014) SoilGrids1km — global soil information based on automated mapping. PLoS ONE 9(8). https://doi.org/10.1371/journal.pone.0105992

  • Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115. https://doi.org/10.1016/S0022-1694(03)00257-9

    Article  Google Scholar 

  • Houze RA, Rasmussen KL, Medina S, Brodzik SR, Romatschke U (2011) Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull Am Meteorol Soc 92:291–298. https://doi.org/10.1175/2010BAMS3173.1

    Article  Google Scholar 

  • Hunt KMR, Turner AG, Shaffrey LC (2018) The evolution, seasonality and impacts of western disturbances. Q J R Meteorol Soc 144:278–290. https://doi.org/10.1002/qj.3200

    Article  Google Scholar 

  • ICIMOD (2017) The Upper Indus Basin Network; a regional science forum. International Centre for Integrated Mountain Development (ICIMOD) Publications Unit GPO Box 3226, Kathmandu, Nepal

  • Immerzeel W, Lutz A, Droogers P (2012a) Climate change impacts on the upstream water resources of the Amu and Syr Darya River Basins, Tech. rep., FutureWater, Wageningen

  • Immerzeel WW, van Beek LPH, Konz M, Shrestha AB, Bierkens MFP (2012b) Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim Chang 110(3):721–736. https://doi.org/10.1007/s10584-011-0143-4

    Article  Google Scholar 

  • Jacob D, Van Den Hurk BJJM, Andrñ U, Elgered G, Fortelius C, Graham LP et al (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorog Atmos Phys 77:19–43. https://doi.org/10.1007/s007030170015

    Article  Google Scholar 

  • Lau KM, Yang S (1997) Climatology and interannual variability of the southeast asian summer monsoon. Adv Atmos Sci 14:141–162. https://doi.org/10.1007/s00376997-0016-y

    Article  Google Scholar 

  • Lutz AF, Droogers P, Immerzeel W (2012) Climate change impact and adaptation on the water resources in the Amu Darya and Syr Darya River Basins, Tech. rep., FutureWater, Wageningen

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4:587–592. https://doi.org/10.1038/NCLIMATE2237

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Kraaijenbrink PDA, Shrestha AB, Bierkens MFP (2016) Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLoS ONE 11(11):e0165630. https://doi.org/10.1371/journal.pone.0165630

    Article  Google Scholar 

  • MacDonald MK, Pomeroy JW, Pietroniro A (2010) On the importance of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains. Hydrol Earth Syst Sci 14:1401–1415. https://doi.org/10.5194/hess-14-1401-2010

    Article  Google Scholar 

  • Mahmood R, Jia S, Babel MS (2016) Potential impacts of climate change on water resources in the Kunhar River Basin, Pakistan. Water 8:23. https://doi.org/10.3390/w8010023

    Article  Google Scholar 

  • Mölg N, Bolch T, Rastner P, Strozzi T, Paul F (2018) A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges. Earth Syst Sci Data 10:1807–1827. https://doi.org/10.5194/essd-10-1807-2018

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Odeh IOA, McBratney AB (2005) PEDOMETRICS, Encyclopedia of soils in the environment. Elsevier. Pages 166-175, ISBN 9780123485304, https://doi.org/10.1016/B0-12-348530-4/00020-5

  • Paul F, Huggel C, KaÈaÈb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens Environ 89:510–518. https://doi.org/10.1016/j.rse.2003.11.007

    Article  Google Scholar 

  • Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp MJ, The Randolph Consortium (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glacial 60(221):537–552. https://doi.org/10.3189/2014JoG13J176

    Article  Google Scholar 

  • Ragettli S, Pellicciotti F, Bordoy R, Immerzeel WW (2013) Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resour Res 49:6048–6066. https://doi.org/10.1002/wrcr.20450

    Article  Google Scholar 

  • Rankl M, Kienholz C, Braun M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Crosphere 8:977–989. https://doi.org/10.5194/tc-8-977-2014

    Article  Google Scholar 

  • Rees HG, Collins DN (2005) Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming. Hydrol Process 20(10):2157–2169. https://doi.org/10.1002/hyp.6209

    Article  Google Scholar 

  • Reid TD, Carenzo M, Pellicciotti F, Brock BW (2012) Including debris cover effects in a distributed model of glacier ablation. J Geophys Res Atmos 117:D18105. https://doi.org/10.1029/2012JD017795

    Article  Google Scholar 

  • Ritter A, Muñoz-carpena R (2013) Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol 480:33–45. https://doi.org/10.1016/j.jhydrol.2012.12.004

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23. https://doi.org/10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Shrestha M, Koike T, Hirabayashi Y, Xue Y, Wang L, Rasul G, Ahmad B (2015) Integrated simulation of snow and glacier melt in water and energy balance-based, distributed hydrological modeling framework at Hunza River Basin of Pakistan Karakoram region. J Geophys Res Atmos 120:4889–4919. https://doi.org/10.1002/2014JD022666

    Article  Google Scholar 

  • Tahir AA, Chevallier P, Arnaud Y, Neppel L, Ahmad B (2011) Modeling snowmelt-runoff under climate scenarios in the Hunza River Basin, Karakoram Range, Northern Pakistan. J Hydrol 409:104–117

    Article  Google Scholar 

  • Terink W, Lutz AF, Simons GWH, Immerzeel WW, Droogers P (2015) SPHY v2.0: Spatial Processes in HYdrology. Geosci Model Dev 8:2009–2034. https://doi.org/10.5194/gmd-8-2009-2015

    Article  Google Scholar 

  • Thayyen RJ, Gergan JT (2010) Role of glaciers in watershed hydrology: a preliminary study of a “Himalayan catchment”. Cryosphere 4:115–128. https://doi.org/10.5194/tc-4-115-2010

    Article  Google Scholar 

  • Tóth B, Weynants M, Nemes A, Makó A, Bilas G, Tóth G (2015) New generation of hydraulic pedotransfer functions for Europe. Eur J Soil Sci 66(226):238–238. https://doi.org/10.1111/ejss.12192

    Article  Google Scholar 

  • Wagnon P, Vincent C, Arnaud Y, Berthier E, Vuillermoz E, Gruber S, Ménégoz M, Gilbert A, Dumont M, Shea JM, Stumm D, Pokhrel BK (2013) Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryospher 7:1769–1786. https://doi.org/10.5194/tc-7-1769-2013

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(6312):6335–6335. https://doi.org/10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Wijngaard RR, Lutz AF, Nepal S, Khanal S, Pradhananga S, Shrestha AB, Immerzeel WW (2017) Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 12(12):e0190224. https://doi.org/10.1371/journal.pone.0190224

    Article  Google Scholar 

Download references

Acknowledgments

This study was a part of the master research work of the first author conducted at the Institute of Space Technology (IST), Islamabad. The authors are grateful to Future Water Netherland for providing the SPHY model in the public domain. The German Climate Computing Centre (DKRZ) is acknowledged for providing the CORDEX South Asia dataset at Earth System Grid Federation (ESGF) node. Water and Power Development Authority (WAPDA) Pakistan is also acknowledged for providing the daily observed datasets of temperature, precipitation, and streamflow for the Hunza Basin.

Funding

Shabeh ul Hasson thanks the support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Cluster of Excellence “CliSAP” (EXC177), and under Germany’s Excellence Strategy –EXC2037 “CLICCS - Climate, Climatic Change, and Society” –Project Number: 390683824, contribution to the Center for Earth System Research and Sustainability (CEN) of Universität Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mujtaba Hassan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, E., Hassan, M., Hasson, S. et al. Future water availability from the western Karakoram under representative concentration pathways as simulated by CORDEX South Asia. Theor Appl Climatol 141, 1093–1108 (2020). https://doi.org/10.1007/s00704-020-03261-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03261-w

Navigation