Skip to main content
Log in

Numerical analysis of micro-pin-fin heat sink cooling in the mainboard chip of a CPU

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The cooling capability of heat sinks is important for a central processing unit (CPU). In this work, simulation has been done to investigate heat transfer (HT) in a heat sink (HS) mounted on the circular cylinder chip of a CPU that is studied and to explore the thermofluid behavior of the designed micro-pin-fin heat sink (MPFHS). Air cooling methods are used for heat extraction. This numerical work considers the effects of inlet turbulence intensity (TI) and fin diameter (D) of the micro-pin-fin on the performance of the HS. Turbulent SST model is used to explore turbulence regime in the system. The HT and pressure coefficient were obtained at different Reynolds number (Re) (i.e., different inlet velocities). As shown in this study, the Nusselt number (Nu) rises with the increase in air flow velocity which enhances the heat extraction from CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.Y. Yoo, D.S. Park, M.H. Chung, S.Y. Lee, Heat transfer enhancement for fin-tube heat exchanger using vortex generators. KSME Int. J. 16(1), 109–115 (2002)

    Article  Google Scholar 

  2. S.E. Ghasemi, A.A. Ranjbar, M.J. Hosseini, Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid. Mech. Res. Commun. 84, 85–89 (2017)

    Article  Google Scholar 

  3. H. Arya, M.M. Sarafraz, M. Arjomandi, Heat transfer and fluid flow of MgO/ethylene glycol in a corrugated heat exchanger. J. Mech. Sci. Technol. 32(8), 3975–3982 (2018)

    Article  Google Scholar 

  4. K. Kim, Heat pipe cooling technology for desktop PC CPU. Appl. Therm. Eng. 23, 1137–44 (2003)

    Article  Google Scholar 

  5. I. Khorunzhii, H. Gabor, R. Job, W.R. Fahrner, H. Baumann, Modeling of a pin fin heat converter with fluid cooling for power semiconductor modules. Int. J. Energy Res. 27, 1015–1026 (2003)

    Article  Google Scholar 

  6. S.Y. Kim, R.L. Webb, Thermal performance analysis of fan-heat sinks for CPU cooling, in Proceedings of the IMECE’03, IMECE 2003-42172 (2003)

  7. D. Kim, Thermal optimization of microchannel heat sink with pin fin structures, in Proceedings of the IMECE’03, IMECE 2003-42180 (2003)

  8. S.J. Kim, Comparison of fluid flow and thermal characteristics of plate-fin and pin-fin heat sinks subject to a parallel flow. Heat Transf. Eng. 29(2), 169–177 (2008)

    Article  ADS  Google Scholar 

  9. T. Ambreen, M.H. Kim, Flow and heat transfer characteristics over a square cylinder with corner modifications. Int. J. Heat Mass Transf. 117, 50–57 (2018)

    Article  Google Scholar 

  10. J.W. Scholeten, D.B. Murray, Unsteady heat transfer and velocity of a cylinder in cross flow- I. Low free stream turbulence. Int. J. Heat Mass Transf. 10(41), 1139–1148 (1998)

    Article  Google Scholar 

  11. S. Bhattacharyya, S. Das, A. Sarkar, A. Guin, A. Mullick, Numerical simulation of flow and heat transfer around hexagonal cylinder. Int. J. Heat Technol. 35(2), 360–363 (2017)

    Article  Google Scholar 

  12. A.C. Benim, E. Pasqualotto, S.H. Suh, Modelling turbulent flow past a circular cylinder by RANS, URANS, LES and DES. Prog. Comput. Fluid Dyn. 8(5), 299–307 (2008)

    Article  Google Scholar 

  13. A.C. Benim, H. Chattopadhyay, A. Nahavandi, Computational analysis of turbulent forced convection in a channel with a triangular prism. Int. J. Therm. Sci. 50, 1973–1983 (2011)

    Article  Google Scholar 

  14. A.C. Benim, E. Aslan, I. Taymaz, Lattice Boltzmann method for laminar forced convection in a channel with a triangular prism. Heat Transf. Res. 42(4), 359–377 (2011)

    Article  Google Scholar 

  15. R.S. Prasher, J. Dirner, J. Chang, A. Myers, D. Chau, D. He, S. Prstic, Nusselt number and friction factor of staggered array of low aspect ratio micro-pin-fins under cross flow for water as fluid. ASME J. Heat Transf. 129, 141–153 (2007)

    Article  Google Scholar 

  16. W. Qu, A. Siu-Ho, Liquid single-phase flow in an array of micro-pin-fins—Part I: heat transfer characteristics. J. Heat Transf. Trans. ASME 130, 122402 (2008)

    Article  Google Scholar 

  17. A. Kosar, Y. Peles, Micro scale pin fin heat sinks—parametric performance evaluation study. IEEE Trans. Compon. Packag. Technol. 30, 855–865 (2007)

    Article  Google Scholar 

  18. H. Abbassi, S. Turki, S. Ben Nasrallah, Numerical investigation of forced convection in a plane channel with a built-in triangular prism. Int. J. Therm. Sci. 40, 649–658 (2001)

    Article  Google Scholar 

  19. M. Muthtamilselvan, K. Periyadurai, Deog Hee Doh, Impact of nonuniform heated plate on double-diffusive natural convection of micropolar fluid in a square cavity with Soret and Dufour effects. Adv. Powder Technol. 29(1), 66–77 (2018)

    Article  Google Scholar 

  20. M. Muthtamilselvan, K. Periyadurai, Deog Hee Doh, Effect of uniform and nonuniform heat source on natural convection flow of micropolar fluid. Int. J. Heat Mass Transf. 115(Part A), 19–34 (2017)

    Article  Google Scholar 

  21. M. Muthtamilselvan, K. Periyadurai, Deog Hee Doh, Convection of micropolar fluid in a square cavity with an inside heater. J. Thermophys. Heat Transf. 31(4), 817–831 (2017)

    Article  Google Scholar 

  22. H.C. Chiu, R.H. Hsieh, K. Wang, J.H. Jang, C.R. Yuc, The heat transfer characteristics of liquid cooling heat sink with micro pin fins. Int. Commun. Heat Mass Transf. 86, 174–180 (2017)

    Article  Google Scholar 

  23. H. Chattopadhyay, S. Murmu, Transport phenomena over bluff bodies at varying inlet turbulent intensity. Heat Transf. Res. (Onilne Published). https://doi.org/10.1615/HeatTransRes.2018019048

  24. S. Bhattacharyya, H. Chattopadhyay, A.C. Benim, Simulation of Heat transfer enhancement in tube flow with twisted tape insert. Prog. Comput. Fluid Dyn. Int. J. 17(3), 193–197 (2017)

    Article  Google Scholar 

  25. J.P. Abraham, E.M. Sparrow, J.C.K. Tong, Heat transfer in all pipe flow regimes: laminar, transitional/intermittent, and turbulent. Int. J. Heat Mass Transf. 52, 557–563 (2009)

    Article  Google Scholar 

  26. S. Bhattacharyya, H. Chattopadhyay, S. Bandyopadhyay, Numerical study on heat transfer enhancement through a circular duct fitted with centre-trimmed twisted tape. Int. J. Heat Technol. 34(3), 401–406 (2016)

    Article  Google Scholar 

  27. S. Bhattacharyya, H. Chattopadhyay, A.C. Benim, Computational investigation of heat transfer enhancement by alternating inclined ribs in tubular heat exchanger. Prog. Comput. Fluid Dyn. Int. J. 17(6), 390–396 (2017)

    Article  MathSciNet  Google Scholar 

  28. S. Bhattacharyya, H. Chattopadhyay, A. Guin, A.C. Benim, Investigation of inclined turbulators for heat transfer enhancement in a solar air heater. Heat Transf. Eng. (2018). https://doi.org/10.1080/01457632.2018.1474593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SB presented the idea. He developed the theory and AB and RS helped him to perform the computations. MR-G verified the numerical methods. BS and NMH are expert in heat transfer and mathematical modelling. They encouraged SB to work on heat sink cooling of the CPU. Based on the reviewers comments, BS and NMH helped to improve the manuscript. Also, they wrote some sections of results and discussions and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Hoang Minh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Souayeh, B., Banerjee, A. et al. Numerical analysis of micro-pin-fin heat sink cooling in the mainboard chip of a CPU. Eur. Phys. J. Plus 135, 432 (2020). https://doi.org/10.1140/epjp/s13360-020-00359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00359-y

Navigation