Skip to main content
Log in

Digital holographic interferometry for measuring the absorbed three-dimensional dose distribution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Ionizing radiations are being widely used in a variety of medical and industrial applications in which the exact determination of the absorbed dose distribution is of crucial importance. Digital holographic interferometry (DHI) is an optical technique that uses lasers to produce fringe patterns which must be reconstructed to measure the physical quantities of interest. The DHI technique is sensitive to noise that makes it difficult to adopt this technique for practically measuring the absorbed dose. In this paper, a new approach to DHI has been developed based on using fringe contouring, polynomial phase fitting and inverse Abel transformation, to reconstruct the three-dimensional dose distribution in noisy conditions. In order to assess the feasibility of this approach in measuring the absorbed dose distributions in noisy conditions, the whole approach is modeled for high energy electrons. It is shown that the three-dimensional dose distribution inside the absorbing medium can be obtained with good accuracy even in the presence of considerable amounts of deliberately added noise to the holograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Falahati et al., J. Instrum. 13, P02028 (2018)

    Article  Google Scholar 

  2. E. Hussmann, Appl. Opt. 10, 182 (1971)

    Article  ADS  Google Scholar 

  3. J. Seuntjens, A. DuSautoy, Standards and Codes of Practice in Medical Radiation Dosimetry, vol. 37 (2002)

  4. A.M. Beigzadeh et al., Lasers Surg. Med. (2020). https://doi.org/10.1002/lsm.23193

    Article  Google Scholar 

  5. A. Krauss, Metrologia 43, 259 (2006)

    Article  ADS  Google Scholar 

  6. N.V. Klassen, C.K. Ross, J. Res. Natl. Inst. Stand. Technol. 102, 63 (1997)

    Article  Google Scholar 

  7. A. Miller, W. McLaughlin, Phys. Med. Biol. 21, 285 (1976)

    Article  Google Scholar 

  8. E. Flores-Martinez, M.J. Malin, L.A. DeWerd, Rev. Sci. Instrum. 87, 114301 (2016)

    Article  ADS  Google Scholar 

  9. L. Heflinger, R. Wuerker, R. Brooks, J. Appl. Phys. 37, 642 (1966)

    Article  ADS  Google Scholar 

  10. J. Devanney, Nucl. Instrum. Methods 120, 77 (1974)

    Article  ADS  Google Scholar 

  11. A. Miller, W.L. McLaughlin, Nucl. Instrum. Methods 128, 337 (1975)

    Article  ADS  Google Scholar 

  12. M.R. Vaziri, F. Hajiesmaeilbaigi, M. Maleki, J. Opt. 15, 035202 (2013)

    Article  ADS  Google Scholar 

  13. E. Hussmann, W. McLaughlin, Radiat. Res. 47, 1 (1971)

    Article  ADS  Google Scholar 

  14. A. Miller, Nukleonika 24, 907 (1979)

    Google Scholar 

  15. A. Miller, E. Hussmann, W. McLaughlin, Rev. Sci. Instrum. 46, 1635 (1975)

    Article  ADS  Google Scholar 

  16. S. Nicolau, D.G. Sporea, V. Niculescu, in International Conference on Optical Metrology (International Society for Optics and Photonics, 1999), p. 393

  17. U. Schnars, W. Jüptner, Appl. Opt. 33, 179 (1994)

    Article  ADS  Google Scholar 

  18. U. Schnars et al., in Digital Holography and Wavefront Sensing, ed. by U. Schnars, C. Falldorf, J. Watson, W. Jüptner (Springer, Berlin, 2015), p. 69

    Google Scholar 

  19. A. Cavan, J. Meyer, Med. Phys. 41, 022102 (2014)

    Article  Google Scholar 

  20. Z. Malacara, M. Servin, Interferogram Analysis for Optical Testing (CRC Press, Boca Raton, 2016)

    Google Scholar 

  21. Y. Huang et al., Opt. Exp. 19, 606 (2011)

    Article  ADS  Google Scholar 

  22. E. Flores-Martinez, et al., in AIP Conference Proceedings (AIP Publishing, 2016), p. 110001

  23. U. Schnars, JOSA A 11, 2011 (1994)

    Article  ADS  Google Scholar 

  24. R. Arizaga et al., Opt. Commun. 108, 209 (1994)

    Article  ADS  Google Scholar 

  25. P. O’shea, IEEE Signal Process. Lett. 9, 251 (2002)

    Article  ADS  Google Scholar 

  26. M.R.R. Vaziri, F. Hajiesmaeilbaigi, M.H. Maleki, Opt. Eng. 51, 044301 (2012)

    Article  ADS  Google Scholar 

  27. J.F. Briesmeister, MCNP–A General Monte Carlo Code for Neutron and Photon Transport (Los Alamos National Laboratory, Los Alamos, 1986)

    Google Scholar 

  28. E. Kazemi et al., Anal. Chim. Acta 905, 85 (2016)

    Article  Google Scholar 

  29. A. Beigzadeh, M.R. Vaziri, F. Ziaie, Nucl. Instrum. Methods Phys. Res. 864, 40 (2017)

    Article  ADS  Google Scholar 

  30. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, New York, 2006)

    Google Scholar 

  31. B. Farmanfarmaei, M.R. RashidianVaziri, F. Hajiesmaeilbaigi, Quantum Electron. 44, 1029 (2014)

    Article  ADS  Google Scholar 

  32. A. Beigzadeh et al., Radiat. Meas. 119, 132 (2018)

    Article  Google Scholar 

  33. J.B. Schemm, C.M. Vest, Appl. Opt. 22, 2850 (1983)

    Article  ADS  Google Scholar 

  34. J.J. Snyder, Appl. Opt. 19, 1223 (1980)

    Article  ADS  Google Scholar 

  35. G.A. Mastin, D.C. Ghiglia, Appl. Opt. 24, 1727 (1985)

    Article  ADS  Google Scholar 

  36. K.J. Gasvik, K.G. Robbersmyr, T. Vadseth, in 33rd Annual Technical Symposium (International Society for Optics and Photonics, 1989), p. 64

  37. T. Yatagai et al., Opt. Eng. 21, 213432 (1982)

    Google Scholar 

  38. C. Hilditch, Mach. Intell. 6, 403 (1969)

    Google Scholar 

  39. M. Cheriet et al., Character Recognition Systems: A Guide for Students and Practitioners (Wiley, New York, 2007)

    Book  Google Scholar 

  40. G. Pretzier, Z. Naturforsch. A 46, 639 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. G. Pretzier, H. Jager, T. Neger, Meas. Sci. Technol. 4, 649 (1993)

    Article  ADS  Google Scholar 

  42. M. Berger, S. Seltzer, in Studies in Penetration of Charged Particles in Matter, vol. 205 (1964)

  43. M.J. Berger, S.M. Seltzer, National Standard Reference Data System (1982)

  44. G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)

    Article  ADS  Google Scholar 

  45. L. Tilton, J. Taylor, J. Res. Natl. Bur. Stand. 20, 419 (1938)

    Article  Google Scholar 

  46. D.B. Leviton, B.J. Frey, in SPIE Astronomical Telescopes + Instrumentation (International Society for Optics and Photonics, 2006), p. 62732K

  47. K. Itoh, Appl. Opt. 21, 2470 (1982)

    Article  ADS  Google Scholar 

  48. D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rashidian Vaziri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidian Vaziri, M.R., Beigzadeh, A.M., Ziaie, F. et al. Digital holographic interferometry for measuring the absorbed three-dimensional dose distribution. Eur. Phys. J. Plus 135, 436 (2020). https://doi.org/10.1140/epjp/s13360-020-00443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00443-3

Navigation