Skip to main content

Advertisement

Log in

Accumulation of phosphorus and carbon and the dependency on biological N2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Species of the genera Polhillia, Wiborgia and Wiborgiella are endemic to the Cape fynbos, South Africa. These plants form root nodules with soil rhizobia that fix atmospheric nitrogen. Little is known about their N and P nutrition, as well as their water-use efficiency in this highly dry and nutrient-poor soil environment. Therefore, the aim of this study was to assess P nutrition and water-use efficiency in natural stands of Polhillia, Wiborgia and Wiborgiella species as well as their dependency on Biological N2 fixation for nutrition. The δ15N natural abundance technique was used to measure the symbiotic performance. The Acid and alkaline phosphatase activities were assayed using p-nitrophenol method. 16S rRNA sequence was used to identify microsymbionts nodulating the test plants. The δ15N study showed a high dependency of the tested species on N2 fixation. The N derived from fixation was 76–84% for Polhillia sps., 73–91% for Wiborgia sps., and 61–68% for Wiborgiella sessilifolia. The species differed in water-use efficiency, with δ13C values of −28.1 to −25.1‰ for Polhillia sps., −28.3 to −25.8 ‰ for Wiborgia sps., and − 27.7 to −27.1‰ for Wiborgiella sessilifolia. The rhizosphere acid and alkaline phosphatase activities were higher in P. brevicalyx and P. pollens, than in the other tested species and this resulted in greater available P in the rhizosphere soils and an increased P uptake and accumulation in the plant shoots. Based on 16S rRNA nucleotide sequence and phylogenetic analysis of root nodule isolates, a diverse and novel Mesorhizobium sps. nodulate the tested plant species in the fynbos ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aremu BR, Alori ET, Kutu RF, Babalola OO (2017) Potentials of microbial inoculants in soil productivity: an outlook on African legumes. In: Microorganisms for Green Revolution. Springer, pp 53–75

  • Beukes CW, Venter SN, Law IJ, Phalane FL, Steenkamp ET (2013) South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. PLoS One 8:e68406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beukes CW, Steenkamp ET, Van Zyl E et al (2019) Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides. Antonie Van Leeuwenhoek 112:1369–1385

    Article  CAS  PubMed  Google Scholar 

  • Beyers CPDL, Coetzer FJ (1971) Effect of concentration, pH and time on the properties of di-ammonium EDTA as a multiple soil extractant. Agrochemophysica 3:49–53

    CAS  Google Scholar 

  • Boatwright JS, Tilney PM, Van Wyk B-E (2010) Taxonomy of Wiborgiella (Crotalarieae, Fabaceae), a genus endemic to the greater cape region of South Africa. Syst Bot 35:325–340

    Article  Google Scholar 

  • Brady NC, others (1990) Making agriculture a sustainable industry. Sustain Agric Syst 20–32

  • Chamier J, Schachtschneider K, Le Maitre DC et al (2012) Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38:345–356

    Article  Google Scholar 

  • Cocks MP, Stock WD (2001) Field patterns of nodulation in fifteen Aspalathus species and their ecological role in the fynbos vegetation of southern Africa. Basic Appl Ecol 2:115–125

    Article  Google Scholar 

  • Cowling RM, McDonald DJ (1998) Local endemism and plant conservation in the cape floristic region. In: Landscape disturbance and biodiversity in Mediterranean-type ecosystems. Springer, pp 171–188

  • Cramer MD (2010) Phosphate as a limiting resource: introduction

  • Dludlu MN, Chimphango S, Stirton CH, Muasya AM (2017) Differential preference of Burkholderia and Mesorhizobium to pH and soil types in the Core cape subregion, South Africa. Genes (Basel) 9:2

    Article  Google Scholar 

  • Dludlu MN, Chimphango SBM, Walker G, Stirton CH, Muasya AM (2018) Horizontal gene transfer among rhizobia of the Core cape subregion of southern Africa. S Afr J Bot 118:342–352

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott GN, Chen W-M, Chou J-H, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, de Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Forest F, Colville JF, Cowling RM (2018) Evolutionary diversity patterns in the cape flora of South Africa. In: Phylogenetic Diversity. Springer, pp 167–187

  • Gerding M, O’Hara GW, Bräu L, Nandasena K, Howieson JG (2012) Diverse Mesorhizobium spp. with unique nodA nodulating the south African legume species of the genus Lessertia. Plant Soil 358:385–401. https://doi.org/10.1007/s11104-012-1153-3

    Article  CAS  Google Scholar 

  • Goldblatt P, Manning JC (2002) Plant diversity of the cape region of southern Africa. Ann Missouri Bot Gard 89:281–302

    Article  Google Scholar 

  • Hall T (2004) BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html.2004

  • Herbien SA, Neal JL (1990) Soil pH and phosphatase activity. Commun Soil Sci Plant Anal 21:439–456

    Article  CAS  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  CAS  PubMed  Google Scholar 

  • Howieson JG, De Meyer SE, Vivas-Marfisi A et al (2013) Novel Burkholderia bacteria isolated from Lebeckia ambigua--a perennial suffrutescent legume of the fynbos. Soil Biol Biochem 60:55–64

    Article  CAS  Google Scholar 

  • Kanu SA, Dakora FD (2012) Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the cape Fynbos, South Africa. Soil Biol Biochem 54:68–76

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Lemaire B, Dlodlo O, Chimphango S et al (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core cape subregion (South Africa). FEMS Microbiol Ecol 91:2–17

    Article  Google Scholar 

  • Magadlela A, Kleinert A, Dreyer LL, Valentine AJ (2014) Low-phosphorus conditions affect the nitrogen nutrition and associated carbon costs of two legume tree species from a Mediterranean-type ecosystem. Aust J Bot 62:1–9

    Article  CAS  Google Scholar 

  • Maistry PM, Muasya AM, Valentine AJ, Chimphango SBM (2015) Increasing nitrogen supply stimulates phosphorus acquisition mechanisms in the fynbos species Aspalathus linearis. Funct Plant Biol 42:52–62

    Article  CAS  Google Scholar 

  • Manghabati H, Kohlpaintner M, Ettl R, Mellert K, Blum U, Göttlein A (2018) Correlating phosphorus extracted by simple soil extraction methods with foliar phosphorus concentrations of Picea abies (L.) H. Karst. and Fagus sylvatica (L.). J Plant Nutri Soil Sci. 181(4):547–56.

  • Maseko ST, Dakora FD (2013) Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the cape fynbos of South Africa. S Afr J Bot 89:289–295. https://doi.org/10.1016/j.sajb.2013.06.023

    Article  CAS  Google Scholar 

  • Maseko ST, Dakora FD (2015) Nitrogen nutrition, carbon accumulation and δ13C of Cyclopia and Aspalathus species in different settings of the cape fynbos, South Africa. J Plant Ecol 9:586–595

    Article  Google Scholar 

  • Mbah GC, Dakora FD (2017) Nitrate inhibition of N 2 fixation and its effect on micronutrient accumulation in shoots of soybean (Glycine max L. Merr.), Bambara groundnut (Vigna subterranea L. Vedc) and Kersting’s groundnut (Macrotyloma geocarpum harms.). Symbiosis 1–12

  • Meadows ME (2006) Global change and southern Africa. Geogr Res 44:135–145

    Article  Google Scholar 

  • Mpai T, Jaiswal SK, Dakora FD (2016) Biological nitrogen fixation and molecular diversity of rhizobia isolated from root nodules of wild legumes: Polhillia, Wiborgia and Wiborgiella species of the south African cape fynbos. South African J Bot 100(103):336

  • Muofhe ML, Dakora FD (1999) Nitrogen nutrition in nodulated field plants of the shrub tea legume Aspalathus linearis assessed using 15N natural abundance. Plant Soil 209:181–186

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Phosphorus in action. Springer, pp 215–243

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  PubMed  Google Scholar 

  • Power SC, Cramer MD, Verboom GA, Chimphango SBM (2010) Does phosphate acquisition constrain legume persistence in the fynbos of the cape floristic region? Plant Soil 334:33–46

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method : a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

    CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (2012) Handbook for rhizobia: methods in legume-Rhizobium technology. Springer Science & Business Media

  • Spriggs AC, Dakora FD (2009) Field assessment of symbiotic N2 fixation in wild and cultivated Cyclopia species in the south African fynbos by 15N natural abundance. Tree Physiol 29:239–247

    Article  CAS  PubMed  Google Scholar 

  • Stirton CH (1986) Polhillia, a new genus of papilionoid legumes endemic to South Africa. S Afr J Bot 52:167–180

    Article  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. Methods soil anal part 2 microbiological biochemical properties 775–833

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarafdar JC, Yadav RS, Meena SC (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    Article  CAS  Google Scholar 

  • Unkovich M, Herridge D, Peoples M, et al (2008) Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research (ACIAR)

  • Vincent JM (1970) A manual for the practical study of root-nodule Bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Zinga MK, Jaiswal SK, Dakora FD (2017) Presence of diverse rhizobial communities responsible for nodulation of common bean ( Phaseolus vulgaris ) in south African and Mozambican soils. FEMS Microbiol Ecol 93:fiw236. https://doi.org/10.1093/femsec/fiw236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the South African Research Chair in Agrochemurgy and Plant Symbioses, the National Research Foundation, and the Tshwane University of Technology for financial support to FDD’s research, and for a SARCHI Chair Master’s bursary to TM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay K. Jaiswal or Felix D. Dakora.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mpai, T., Jaiswal, S.K. & Dakora, F.D. Accumulation of phosphorus and carbon and the dependency on biological N2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. Symbiosis 81, 65–78 (2020). https://doi.org/10.1007/s13199-020-00683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-020-00683-y

Keywords

Navigation