Skip to main content
Log in

Machinability of Silicon and German Silver in Micro Electrical Discharge Machining: a Comparative Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper introduces an experimental investigation of micro hole drilling on two different categories of material such as silicon and german silver using micro electrical discharge machining (μEDM) process. The conductivities of the two materials are of different levels; silicon being a semiconductor has relatively much lower electrical conductivity as compared to german silver which is an alloy of copper, nickel and zinc. The tool electrode used is tungsten rod of 518 μm diameter. Responses like material removal rate (MRR), taper angle (TA), circularity error (CE) and overcut (OC) have been calculated and their variation with respect to the process parameters such as capacitance and voltage are evaluated. In both the materials, the values of all the responses increases with an increase in both voltage and capacitance. German silver is observed to have a higher MRR and OC than that of silicon while silicon has a higher TA for the same values of process parameters. The CE of silicon is higher at lower capacitance while it is higher for german silver at higher capacitance. From the analysis of variance (ANOVA), it is observed that both the voltage and capacitance played a significant role in all the responses. An optimum condition of micro hole drilling of both the materials is achieved by formulating overall evaluation criteria (OEC), which combines all the response parameters into a single index. In most of the cases, OEC of german silver is found to be higher than silicon, thus justifying the superior machinability performance of german silver. From the ANOVA of OEC, the role of capacitance is found to be more significant as compared to the voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Modica F, Marrocco V, Fassi I (2017) Micro-electro-discharge machining (micro-EDM). In: Fassi I, Shipley D (eds) Springer tracts in mechanical engineering. Springer, Cham, pp 149–173

    Google Scholar 

  2. Bains PS, Sidhu SS, Payal HS (2018) Magnetic field assisted EDM: new horizons for improved surface properties. Silicon 10:1275–1282. https://doi.org/10.1007/s12633-017-9600-7

    Article  CAS  Google Scholar 

  3. Bhaumik M, Maity K (2019) Effect of electrode materials on different EDM aspects of titanium alloy. Silicon 11:187–196. https://doi.org/10.1007/s12633-018-9844-x

    Article  CAS  Google Scholar 

  4. Kumari S, Datta S, Masanta M, Nandi G, Pal PK (2018) Electro-discharge machining of Inconel 825 super alloy: effects of tool material and dielectric Flushing. Silicon 10:2079–2099. https://doi.org/10.1007/s12633-017-9728-5

    Article  CAS  Google Scholar 

  5. Kolli M, Kumar A (2019) Assessing the influence of surfactant and B4C powder mixed in dielectric fluid on EDM of titanium alloy. Silicon 11. https://doi.org/10.1007/s12633-017-9701-3

  6. Katz Z, Tibbles CJ (2005) Analysis of micro-scale EDM process. Int J Adv Manuf Technol 25:923–928. https://doi.org/10.1007/s00170-003-2007-1

    Article  Google Scholar 

  7. Jahan MP, Wong YS, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209:1706–1716. https://doi.org/10.1016/j.jmatprotec.2008.04.029

    Article  CAS  Google Scholar 

  8. Muthuramalingam T, Mohan B, Vignesh S (2018) Performance analysis of pulse generators on residual stress of machined silicon steel using the EDM process. Silicon 10:1785–1792. https://doi.org/10.1007/s12633-017-9671-5

    Article  CAS  Google Scholar 

  9. Petersen KE (1982) Silicon as a mechanical material. Proc IEEE 70:420–457. https://doi.org/10.1109/PROC.1982.12331

    Article  CAS  Google Scholar 

  10. Joshi K, Bhandarkar UV, Joshi SS (2019) Surface integrity and wafer-thickness variation analysis of ultra-thin silicon wafers sliced using wire-EDM. Adv Mater Process Technol 5:512–525. https://doi.org/10.1080/2374068X.2019.1636185

    Article  Google Scholar 

  11. Wangikar SS, Patowari PK, Misra RD (2017) Effect of process parameters and optimization for photochemical machining of brass and german silver. Mater Manuf Process 32:1747–1755. https://doi.org/10.1080/10426914.2016.1244848

    Article  CAS  Google Scholar 

  12. Sortino M, Belfio S, Totis G, Kuljanic E, Fadelli G (2015) Innovative tool coatings for increasing tool life in milling nickel-coated nickel-silver alloy. Energy Procedia 100:946–952. https://doi.org/10.1016/j.proeng.2015.01.453

    Article  CAS  Google Scholar 

  13. Saxena KK, Srivastava AS, Agarwal S (2016) Experimental investigation into the micro-EDM characteristics of conductive SiC. Ceram Int 42:1597–1610. https://doi.org/10.1016/j.ceramint.2015.09.111

    Article  CAS  Google Scholar 

  14. Peng WY, Liao YS (2003) Study of electrical discharge machining technology for slicing silicon ingots. J Mater Process Technol 140:274–279. https://doi.org/10.1016/S0924-0136(03)00718-0

    Article  CAS  Google Scholar 

  15. Subbu SK, Dhamodaran S, Ramkumar J (2012) Investigation of single pulse discharge on silicon: crater and plasma characteristics. Int J Mechatronics Manuf Syst 5:455. https://doi.org/10.1504/IJMMS.2012.049973

    Article  Google Scholar 

  16. Joshi K, Ananya A, Bhandarkar U, Joshi SS (2017) Ultra thin silicon wafer slicing using wire-EDM for solar cell application. Mater Des 124:158–170. https://doi.org/10.1016/j.matdes.2017.03.059

    Article  CAS  Google Scholar 

  17. Joshi K, Sharma G, Dongre G, Joshi SS (2017) Numerical modelling of wire-EDM for predicting erosion rate of silicon. J Inst Eng Ser C 98:63–73. https://doi.org/10.1007/s40032-016-0237-x

    Article  Google Scholar 

  18. Zeller F, Müller C, Miranzo P, Belmonte M (2017) Exceptional micromachining performance of silicon carbide ceramics by adding graphene nanoplatelets. J Eur Ceram Soc 37:3813–3821. https://doi.org/10.1016/j.jeurceramsoc.2017.03.072

    Article  CAS  Google Scholar 

  19. Tan T-H, Yan J (2017) Atomic-scale characterization of subsurface damage and structural changes of single-crystal silicon carbide subjected to electrical discharge machining. Acta Mater 123:362–372. https://doi.org/10.1016/j.actamat.2016.10.045

    Article  CAS  Google Scholar 

  20. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. Wiley

  21. Kar S, Patowari PK (2019) Effect of non-electrical parameters in fabrication of micro rod using BEDG. Mater Manuf Process 34:1262–1273. https://doi.org/10.1080/10426914.2019.1643475

    Article  CAS  Google Scholar 

  22. Haashir A, Debnath T, Patowari PK (2020) A comparative assessment of micro drilling in boron carbide using ultrasonic machining. Mater Manuf Process 35:86–94. https://doi.org/10.1080/10426914.2019.1697447

    Article  CAS  Google Scholar 

  23. Liu W, Jia Z, Zou S, Zheng X (2014) A new measurement method of relative volume Wear ratio based on discharge debris composition analysis in micro-EDM. Adv Mech Eng 6:479609. https://doi.org/10.1155/2014/479609

    Article  Google Scholar 

  24. Silicon, Si. http://www.matweb.com/search/DataSheet.aspx?MatGUID=7d1b56e9e0c54ac5bb9cd433a0991e27. Accessed 16 Sep 2019

  25. Copper, Cu; Annealed. http://www.matweb.com/search/DataSheet.aspx?MatGUID=9aebe83845c04c1db5126fada6f76f7e. Accessed 16 Sep 2019

  26. Nickel, Ni. http://www.matweb.com/search/DataSheet.aspx?MatGUID=e6eb83327e534850a062dbca3bc758dc. Accessed 16 Sep 2019

  27. Zinc, Zn. http://www.matweb.com/search/DataSheet.aspx?MatGUID=8909140a76074049809ad74d536ed606. Accessed 16 Sep 2019

  28. Kar S, Patowari PK (2019) Experimental investigation of machinability and surface characteristics in microelectrical discharge milling of titanium, stainless steel and copper. Arab J Sci Eng 44:7843–7858. https://doi.org/10.1007/s13369-019-03918-3

    Article  CAS  Google Scholar 

  29. Kar S, Patowari PK (2018) Electrode wear phenomenon and its compensation in micro electrical discharge milling: a review. Mater Manuf Process 33:1491–1517. https://doi.org/10.1080/10426914.2018.1453144

    Article  CAS  Google Scholar 

  30. Jahan MP, Wong YS, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol 46:1145–1160. https://doi.org/10.1007/s00170-009-2167-8

    Article  Google Scholar 

  31. Liu H-S, Yan B-H, Huang F-Y, Qiu K-H (2005) A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J Mater Process Technol 169:418–426. https://doi.org/10.1016/j.jmatprotec.2005.04.084

    Article  CAS  Google Scholar 

  32. Paul TR, Saha A, Majumder H, Dey V, Dutta P (2019) Multi-objective optimization of some correlated process parameters in EDM of Inconel 800 using a hybrid approach. J Braz Soc Mech Sci Eng 41:1–11. https://doi.org/10.1007/s40430-019-1805-9

    Article  CAS  Google Scholar 

  33. Majumder H, Maity KP (2018) Predictive analysis on responses in WEDM of titanium grade 6 using general regression neural network (GRNN) and multiple regression analysis (MRA). Silicon 10:1763–1776. https://doi.org/10.1007/s12633-017-9667-1

    Article  CAS  Google Scholar 

  34. Majumder H, Maity K (2018) Application of GRNN and multivariate hybrid approach to predict and optimize WEDM responses for Ni-Ti shape memory alloy. Appl Soft Comput J 70:665–679. https://doi.org/10.1016/j.asoc.2018.06.026

    Article  Google Scholar 

  35. Feng W, Chu X, Hong Y, Zhang L (2018) Studies on the surface of high-performance alloys machined by micro-EDM. Mater Manuf Process 33:616–625. https://doi.org/10.1080/10426914.2017.1364758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Promod Kumar Patowari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, S., Kar, S. & Patowari, P.K. Machinability of Silicon and German Silver in Micro Electrical Discharge Machining: a Comparative Study. Silicon 13, 1065–1077 (2021). https://doi.org/10.1007/s12633-020-00496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00496-0

Keywords

Navigation