Skip to main content
Log in

Analysis of Known Dependences and the Construction of New Compaction Equations for the Fine-Fraction Materials of the Mining and Metallurgical Complex

  • Published:
Refractories and Industrial Ceramics Aims and scope

We perform the analysis of the available empirical compaction equations for fine-fraction materials. By modeling separate stages of the process of compaction for selected groups of materials, we reveal the advantages and drawbacks restricting the fields of their possible applications. It is shown that the compaction equation proposed at the Z. Nekrasov Institute of Ferrous Metallurgy of the NAS of Ukraine (IFM) is the only dependence that can be successfully applied to fine-fraction materials of the mining and metallurgical complex (MMC). The necessity of subsequent improvement of the indicated equation is substantiated.We propose two compaction equations whose joint application enables one to predict the relationship between the pressure and the degree of compaction in the process of briquetting within the technological range of pressures. These equations allow one to identify the stages of pressing and study the factors affecting the process. They can be also used to optimize the technological conditions of briquetting of materials of the MMC and to increase the reliability of determination of the power-and-force parameters of the process of pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. B. M. Ravich, Briquetting of Ores [in Russian], Nedra, Moscow (1982).

    Google Scholar 

  2. V. V. Ozhogin, Foundations of the Theory and Technology of Briquetting of Milled Raw Materials for Metallurgy [in Russian], Azov-Region State Technical University, Mariupol, (2010).

    Google Scholar 

  3. B. N. Maimur, Development of works on the technology and equipment for the process of briquetting of finely divided raw materials and industrial wastes at the Institute of Ferrous Metallurgy, in: Fundamental and Applied Problems of Ferrous Metallurgy [in Russian], Institute of Ferrous Metallurgy, NAS of Ukraine, Dnepropetrovsk (2014), pp. 329 – 338.

    Google Scholar 

  4. A. Yu. Khudyakov, S. V. Vashchenko, K. V. Baiul, and Yu. S. Semenov, “Kaolin raw material briquetting for lump chamote production,” Refract. Ind. Ceram., 59(4), 333 – 337 (2018).

    Article  CAS  Google Scholar 

  5. S. V. Vashchenko, A. Yu. Khudyakov, K. V. Baiul, and Yu. S. Semenov, “Selecting the batch composition in briquetting,” Steel Transl., 48(8), 509 – 512 (2018).

    Article  Google Scholar 

  6. K. V. Baiul, A. T. Lebed’, S. V. Vashchenko, and A. Yu. Khudyakov, A hydraulic unit for the protection of a rolling press against overloads, Metallurg. Gornorud. Promyshl., No. 7, 159 – 164 (2018).

  7. R. Ya. Popil’skii and Yu. E. Pivinskii, Compaction of Powder Ceramic Masses [in Russian], Metallurgy, Moscow (1983).

  8. T. Comoglu, An overview of compaction equations, J. Fac. Pharm. Ankara,36(2), 123 – 133 (2007).

    Google Scholar 

  9. M. Yu. Bal’shin, Scientific Foundations of Powder and Fiber Metallurgy [in Russian], Metallurgy, Moscow (1972).

  10. I. Klevan, Compression Analysis of Pharmaceutical Powders: Assessment of Mechanical Properties and Tablet Manufacturability Prediction, Ph. D. Thesis, University of Tromso, Tromso, Norway (2011).

    Google Scholar 

  11. P. J. Denny, “Compaction equations: a comparison of the Heckel and Kawakita equations,” Powder Technol., 127(2), 162 – 172 (2002).

    Article  CAS  Google Scholar 

  12. S. Mallick, S. K. Pradhan, M. Chandran, et al., “Study of particle rearrangement, compression behavior, and dissolution properties after melt dispersion of ibuprofen, Avicel and Aerosil,” Results Pharma Sci., No. 1, 1 – 10 (2011).

    Article  CAS  Google Scholar 

  13. R. J. Roberts, R. C. Rowe, and K. Kendal, “Brittle-ductile transitions in die compaction of sodium chloride,” Chem. Eng. Sci., 44(8), 1647 – 1651 (1989).

    Article  CAS  Google Scholar 

  14. A. Z. Isagulov and V. Yu. Kulikov, “Construction of the compaction equation for sand-tar mixtures and their rheological models,” Izv. Vyssh. Uchebn. Zaved., Chern. Metallurg., No. 6, 52 – 56 (2007).

  15. G. Bockstiegel, Modern developments in powder metallurgy, in: Proc. of the Internat. Powder Metall. Conf., Plenum, New York (1966), Vol. 1, pp. 155 – 187.

  16. É. S. Dvilis, Regularities of the Processes of Consolidation of Powder Systems under Variable Conditions of Deformation and Physical Actions [in Russian], Doctoral-Degree Thesis (Physics and Mathematics), Tomsk Polytechnic University, Tomsk (2014).

    Google Scholar 

  17. P. Cardei and I. Gageanu, “A critical analysis of empirical formulas describing the phenomenon of compaction of the powders,” J. Modern Technol. Eng., 2(1), 1 – 20 (2017).

    Google Scholar 

  18. S. Mani, L. G. Tabil, and S. Sokhansanj, “An overview of compaction of biomass grinds,” Powder Hand. Process., 15(2), 1 – 9 (2003).

    Google Scholar 

  19. N. A. Tsytovich, Soil Mechanics [in Russian], Vysshaya Shkola, Moscow (1983).

    Google Scholar 

  20. G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Processes in Powder Metallurgy, Vol. 2: Formation and Sintering [in Russian], MISIS, Moscow (2002).

  21. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 4, CalTech, Pasadena (2012).

    Google Scholar 

  22. R. M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industries Federation, Princeton (2005).

    Google Scholar 

  23. G. M. Zhdanovich, Theory of Pressing of Metallic Powders [in Russian], Metallurgiya, Moscow (1969).

    Google Scholar 

  24. A. K. Karklit, A. P. Losev, S. A. Losev, et al., Production of Refractory Materials by the Semidry Method [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  25. N. D. Titov and Yu. A. Stepanov, Technology of Casting Production [in Russian], Mashinostroenie, Moscow (1974).

    Google Scholar 

  26. V. F. Babkov and V. M. Bezruk, Foundations of Soil Sciences and Soil Mechanics [in Russian], Vysshaya Shkola, Moscow (1976).

    Google Scholar 

  27. P. V. Klassen and I. G. Grishaev, Foundations of the Granulation Technique (Processes and Equipment in Chemical and Petroleum- Chemical Technologies) [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  28. D. Hooper, F. C. Clarke, J. C. Snowden, et al., “A modern approach to the Heckel equation: the effect of compaction pressure on the yield pressure of ibuprofen and its sodium salt,” J. Nanomed. Nanotechnol., 7(3), 1 – 6 (2016).

    Google Scholar 

  29. P. J. Denny, “Compaction equations; a comparison of the Heckel and Kawakita equations,” Powd. Technol., 127(2), 162 – 172 (2002).

    Article  CAS  Google Scholar 

  30. L. Pauling, General Chemistry, Dover, New York (1988).

    Google Scholar 

  31. P. Yadav and A. K. Sahdev, “Physics of tablet with compaction and compression process for novel drug dosage form,” Int. J. Adv. Sci. Res., 3(4), 28 – 34 (2018).

    Google Scholar 

  32. H. R. Hafizpour and M. Khoeini, “Investigation on the consolidation behavior of aluminum/nano-SiC composite powders using nonlinear compaction equation,” J. Amer. Sci., 7(6), 1258 – 1262 (2011).

    Google Scholar 

  33. N. F. Kunin and B. D. Yurchenko, “Regularities of pressing of the powders of various materials,” Poroshk. Metall., No. 6, 3 – 10 (1963).

    Google Scholar 

  34. R. M. German and S. J. Park, Mathematical Relations in Particulate Materials Processing: Ceramics, Powder Metals, Cermets, Carbides, Hard Materials, and Minerals, Wiley, New York (2008).

  35. D. H. Choi, N. A. Kim, K. R. Chu, et al., “Material properties and compressibility using Heckel and Kawakita equation with commonly used pharmaceutical excipients,” J. Pharmaceut. Invest., 40, No. 4, 237 – 244 (2010).

    Article  CAS  Google Scholar 

  36. V. A. Yakovlev, Kinetics of Enzyme Catalysis [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  37. M. J. Adams, M. A. Mulliier, and J. P. Seville, “Agglomerate strength measurement using a uniaxial confined compression test,” Powder Technol., 78(1), 5 – 13 (1994).

    Article  CAS  Google Scholar 

  38. S. F. Yap, M. J. Adams, and J. P. K. Seville, “Single and bulk compression of pharmaceutical excipients: Evaluation of mechanical properties,” Powder Technol., 185(1), 1 – 10 (2008).

    Article  CAS  Google Scholar 

  39. P. Adapa, L. Tabil, and G. Schoenau, “Compression characteristics of selected ground agricultural biomass,” Agricult. Eng. Int.: the CIGR E-journal, XI, Manuscript 1347 (June, 2009).

  40. R. Panelli and F. A. Filho, “A study of a new phenomenological compacting equation,” Powder Technol., 114, 255 – 261 (2001).

    Article  CAS  Google Scholar 

  41. R. D. Ge, “Constitutive model for the hot pressing of powders,” J. Mater. Sci. Technol., No. 10, 374 – 380 (1995).

    Google Scholar 

  42. X. P. Chen, H. Nomura, and Y. Maeda, “Analysis of green sand compaction process applying Cooper – Eaton model,” J. Japan Foundry Soc., 75(1), 35 – 41 (2003).

    CAS  Google Scholar 

  43. I. N. Popescu and R. Vidu, “Compaction behavior modelling of metal-ceramic powder mixtures,” Sci. Bull. Valahia Univ. Mater. Mech., 16(14), 28 – 37 (2018).

    Google Scholar 

  44. P. Shivanand and O. I. Sprockel, “Compaction behavior of cellulose polymers,” Powder Technol., 69(2), 177 – 184 (1992).

    Article  CAS  Google Scholar 

  45. J. M. Sonnergaard, “Investigation of a new mathematical model for compression of pharmaceutical powder,” Eur. J. Pharmaceut. Sci.,14, 149 – 157 (2001).

    Article  CAS  Google Scholar 

  46. I. Shapiro and J. M. Sonnergaard, “Compaction of powders X. Development of a general compaction equation,” Adv. Powder Metall. Part. Mater., 3, 229 – 243 (1993).

    Google Scholar 

  47. S. Chen, J. Zhu, and X. Qi, “A new mathematical equation for the evaluation of the compression behavior of pharmaceutical materials,” Acta Pharmaceut. Sinica, 47(10), 1384 – 1388 (2012).

    Google Scholar 

  48. M. B. Shtern, G. G. Serdyuk, L. A. Maksimenko, et al., Phenomenological Theories of Compaction of Powders [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  49. I. I. Eliseeva and M. M. Yuzbashev, General Theory of Statistics [in Russian], Finansy Statistika, Moscow (2004).

    Google Scholar 

  50. F. Eirich, Rheology. Theory and Applications, Academic Press, New York (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Khudyakov.

Additional information

Translated from Novye Ogneupory, No. 12, pp. 37 – 46, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudyakov, A.Y., Vashchenko, S.V. Analysis of Known Dependences and the Construction of New Compaction Equations for the Fine-Fraction Materials of the Mining and Metallurgical Complex. Refract Ind Ceram 60, 618–626 (2020). https://doi.org/10.1007/s11148-020-00417-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00417-z

Keywords

Navigation