Skip to main content
Log in

Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We survey recent results on the theory of dynamical chaos from the point of view of topological dynamics. We present the concept of three types of dynamics: conservative, dissi-pative, and mixed dynamics, and also show several simple examples of attractors and repellers of all three types. Their similarities and differences with other known types of attractors and repellers (maximal and Milnor ones) are discussed. We also present elements of the qualitative theory of mixed dynamics of reversible systems. As examples of such systems we consider three nonholonomic models of rigid body motion: the Suslov top, rubber disk, and Celtic stone. It is shown that they exhibit mixed dynamics of different nature; in particular, the mixed dynamics observed in the model of rubber disk is extremely difficult to distinguish from the conservative one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Afonin and V. V. Kozlov, “The fall problem for a disk moving on a horizontal plane,” Mech. Solids 32 (1), 4–9 (1997) [transl. from Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 7–13 (1997)].

    Google Scholar 

  2. V. S. Afraimovich and L. P. Shil’nikov, “Strange attractors and quasiattractors,” in Nonlinear Dynamics and Turbulence, Ed. by G. I. Barenblatt, G. Iooss, and D. D. Joseph (Pitman, Boston, 1983), pp. 1–34.

    Google Scholar 

  3. D. V. Anosov and I. U. Bronshtein, “Smooth dynamical systems,” Ch. 3: “Topological dynamics,” in Dynamical Systems–1 (VINITI, Moscow, 1985), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 1, pp. 204–229. Engl. transl. in Dynamical Systems I (Springer, Berlin, 1988), Encycl. Math. Sci. 1, pp. 197–219.

    Google Scholar 

  4. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, “Bifurcation theory,” Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 5, 5–218 (1986). Engl. transl. in Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Springer, Berlin, 1994), Encycl. Math. Sci. 5, pp. 1–205.

    MathSciNet  Google Scholar 

  5. I. S. Astapov, “On the stability of rotation of the Celtic stone,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 2, 97–100 (1980).

    MATH  Google Scholar 

  6. I. A. Bizyaev, A. V. Borisov, and A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors,” Regul. Chaotic Dyn. 20 (5), 605–626 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Bizyaev and I. S. Mamaev, “Dynamics of the nonholonomic Suslov problem under periodic control: Unbounded speedup and strange attractors,” J. Phys. A: Math. Theor., doi: 10.1088/1751-8121/ab7e52 (2020).

    Google Scholar 

  8. A. V. Borisov, A. O. Kazakov, and S. P. Kuznetsov, “Nonlinear dynamics of the rattleback: A nonholonomic model,” Phys. Usp. 57, 453–460 (2014) [transl. from Usp. Fiz. Nauk 184 (5), 493–500 (2014)].

    Article  Google Scholar 

  9. A. V. Borisov, A. O. Kazakov, and I. R. Sataev, “The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top,” Regul. Chaotic Dyn. 19 (6), 718–733 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics (Regular and Chaotic Dynamics, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  11. A. V. Borisov and I. S. Mamaev, “Strange attractors in rattleback dynamics,” Phys. Usp. 46, 393–403 (2003) [transl. from Usp. Fiz. Nauk 173 (4), 407–418 (2003)].

    Article  Google Scholar 

  12. C. Conley, Isolated Invariant Sets and the Morse Index (Am. Math. Soc., Providence, RI, 1978), Reg. Conf. Ser. Math., No. 38.

    Book  MATH  Google Scholar 

  13. A. Delshams, M. Gonchenko, S. V. Gonchenko, and J. T. Lázaro, “Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies,” Discrete Contin. Dyn. Syst. A 38 (9), 4483–4507 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lázaro, and O. Sten’kin, “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps,” Nonlinearity 26 (1), 1–33 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. A. Dobrynskiĭ and A. N. Sharkovskiĭ, “Typicalness of dynamical systems almost all paths of which are stable under permanently acting perturbations,” Sov. Math., Dokl. 14, 997–1000 (1973) [transl. from Dokl. Akad. Nauk SSSR 211 (2), 273–276 (1973)].

    Google Scholar 

  16. A. S. Gonchenko, S. V. Gonchenko, and A. O. Kazakov, “On some new aspects of Celtic stone chaotic dynamics,” Nelinein. Din. 8 (3), 507–518 (2012).

    Article  Google Scholar 

  17. A. S. Gonchenko, S. V. Gonchenko, and A. O. Kazakov, “Richness of chaotic dynamics in nonholonomic models of a Celtic stone,” Regul. Chaotic Dyn. 18 (5), 521–538 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and E. A. Samylina, “Chaotic dynamics and multistability in the nonholonomic model of a Celtic stone,” Radiophys. Quantum Electron. 61 (10), 773–786 (2019) [transl. from Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61 (10), 867–882 (2018)].

    Article  Google Scholar 

  19. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and D. V. Turaev, “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators,” Physica D 350, 45–57 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. S. Gonchenko and E. A. Samylina, “On the region of existence of a discrete Lorenz attractor in the nonholo-nomic model of a Celtic stone,” Radiophys. Quantum Electron. 62 (5), 369–384 (2019) [transl. from Izv. Vyssh. Uchebn. Zaved., Radiofiz. 62 (5), 412–428 (2019)].

    Article  Google Scholar 

  21. S. V. Gonchenko, “Reversible mixed dynamics: A concept and examples,” Discontin. Nonlinearity Complex. 5 (4), 365–374 (2016).

    Article  MATH  Google Scholar 

  22. S. V. Gonchenko, M. S. Gonchenko, and I. O. Sinitsky, “On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles,” Izv. Math. 84 (1), 23–51 (2020) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 84 (1), 27–59 (2020)].

    Article  MATH  Google Scholar 

  23. S. V. Gonchenko, A. O. Kazakov, and D. Turaev, “Wild pseudohyperbolic attractors in a four-dimensional Lorenz system,” arXiv: 1809.07250 [math.DS].

  24. S. V. Gonchenko, J. S. W. Lamb, I. Rios, and D. Turaev, “Attractors and repellers near generic elliptic points of reversible maps,” Dokl. Math. 89 (1), 65–67 (2014) [transl. from Dokl. Akad. Nauk 454 (4), 375–378 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

  25. S. V. Gonchenko, L. P. Shilnikov, and O. V. Stenkin, “On Newhouse regions with infinitely many stable and unstable invariant tori,” in Progress in Nonlinear Science: Proc. Int. Conf., Nizhni Novgorod, 2001, Vol. 1: Mathematical Problems of Nonlinear Dynamics (Nizhni Novgorod, 2002), pp. 80–102.

    MathSciNet  Google Scholar 

  26. S. V. Gonchenko, L. P. Shil’nikov, and D. V. Turaev, “Quasiattractors and homoclinic tangencies,” Comput. Math. Appl. 34 (2–4), 195–227 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev, “On dynamical properties of multidimensional diffeomor-phisms from Newhouse regions. I,” Nonlinearity 21 (5), 923–972 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. V. Gonchenko and O. V. Stenkin, “On the mixed dynamics of systems from Newhouse regions with heteroclinic tangencies,” in Proc. Final Sci. Conf. of Educ. Sci. Innov. Complex “Models, Methods and Software,” Nizhni Novgorod, 2007 (Izd. Nizhegor. Gos. Univ., Nizhni Novgorod, 2007), pp. 101–102 [in Russian].

    Google Scholar 

  29. S. V. Gonchenko and D. V. Turaev, “On three types of dynamics and the notion of attractor,” Proc. Steklov Inst. Math. 297, 116–137 (2017) [transl. from Tr. Mat. Inst. Steklova 297, 133–157 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  30. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov, “On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincar´e homoclinic curve (the higher-dimensional case),” Dokl. Math. 47 (2), 268–273 (1993) [transl. from Dokl. Akad. Nauk 329 (4), 404–407 (1993)].

    MathSciNet  MATH  Google Scholar 

  31. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov, “On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle,” Proc. Steklov Inst. Math. 216, 70–118 (1997) [transl. from Tr. Mat. Inst. Steklova 216, 76–125 (1997)].

    MATH  Google Scholar 

  32. M. Hurley, “Attractors: Persistence, and density of their basins,” Trans. Am. Math. Soc. 269 (1), 247–271 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. V. Karapetyan, “On permanent rotations of a heavy solid body on an absolutely rough horizontal plane,” J. Appl. Math. Mech. 45, 604–608 (1982) [transl. from Prikl. Mat. Mekh. 45 (5), 808–814 (1981)].

    Article  MATH  Google Scholar 

  34. A. O. Kazakov, “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane,” Regul. Chaotic Dyn. 18 (5), 508–520 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  35. A. O. Kazakov, “On the chaotic dynamics of a rubber ball with three internal rotors,” Nonlinear Dyn. Mobile Robot. 2 (1), 73–97 (2014).

    MathSciNet  Google Scholar 

  36. A. O. Kazakov, “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems,” Radiophys. Quantum Electron. 61 (8–9), 650–658 (2019) [transl. from Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61 (8–9), 729–738 (2018)].

    Article  Google Scholar 

  37. A. Kazakov, “Merger of a H´enon-like attractor with a H´enon-like repeller in a model of vortex dynamics,” Chaos 30 (1), 011105 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  38. V. V. Kozlov, “On the integration theory of equations of nonholonomic mechanics,” Regul. Chaotic Dyn. 7 (2), 161–176 (2002) [transl. from Usp. Mekh. 8 (3), 85–107 (1985)].

    Article  MathSciNet  MATH  Google Scholar 

  39. V. V. Kozlov, “Several problems on dynamical systems and mechanics,” Nonlinearity 21 (9), T149–T155 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  40. V. V. Kozlov, “The Euler–Jacobi–Lee integrability theorem,” Regul. Chaotic Dyn. 18 (4), 329–343 (2013) [transl. from Nelinein. Din. 9 (2), 229–245 (2013)].

    Article  MathSciNet  MATH  Google Scholar 

  41. S. P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint,” EPL (Europhys. Lett.) 118 (1), 10007 (2017).

    Article  Google Scholar 

  42. S. P. Kuznetsov, A. Yu. Jalnin, I. R. Sataev, and Yu. V. Sedova, “Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback,” Nelinein. Din. 8 (4), 735–762 (2012).

    Article  Google Scholar 

  43. J. S. W. Lamb and O. V. Stenkin, “Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits,” Nonlinearity 17 (4), 1217–1244 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  44. A. P. Markeev, “On the dynamics of a solid on an absolutely rough plane,” J. Appl. Math. Mech. 47 (4), 473–478 (1984) [transl. from Prikl. Mat. Mekh. 47 (4), 575–582 (1983)].

    Article  MathSciNet  MATH  Google Scholar 

  45. A. P. Markeev, Dynamics of a Body in Contact with a Solid Surface (Nauka, Moscow, 1992) [in Russian].

    MATH  Google Scholar 

  46. J. Milnor, “On the concept of attractor,” Commun. Math. Phys. 99 (2), 177–195 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. S. Minkov, “Thick attractors and skew products,” Cand. Sci. (Phys.–Math.) Dissertation (Moscow State Univ., Moscow, 2016).

    Google Scholar 

  48. S. E. Newhouse, “Diffeomorphisms with infinitely many sinks,” Topology 13, 9–18 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. E. Newhouse, “The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms,” Publ. Math., Inst. Hautes Étud. Sci. 50, 101–151 (1979).

    Article  MATH  Google Scholar 

  50. Nonholonomic Dynamical Systems: Integrability, Chaos, Strange Attractors, Ed. by A. V. Borisov and I. S. Mamaev (Inst. Komp’yut. Issled., Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  51. J. Palis and M. Viana, “High dimension diffeomorphisms displaying infinitely many periodic attractors,” Ann. Math., Ser. 2, 140 (1), 207–250 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  52. J. A. G. Roberts and G. R. W. Quispel, “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems,” Phys. Rep. 216 (2–3), 63–177 (1992).

    Article  MathSciNet  Google Scholar 

  53. N. Romero, “Persistence of homoclinic tangencies in higher dimensions,” Ergodic Theory Dyn. Syst. 15 (4), 735–757 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Ruelle, “Small random perturbations of dynamical systems and the definition of attractors,” Commun. Math. Phys. 82, 137–151 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  55. M. B. Sevryuk, Reversible Systems (Springer, Berlin, 1986), Lect. Notes Math. 1211.

    Book  MATH  Google Scholar 

  56. G. K. Suslov, Theoretical Mechanics (Gostekhizdat, Moscow, 1946) [in Russian].

    Google Scholar 

  57. G. K. Suslov, “On the issue of surface rolling on the surface,” Univ. Izv. (Kiev), No. 6, 1–41 (1892).

    Google Scholar 

  58. D. Topaj and A. Pikovsky, “Reversibility vs. synchronization in oscillator lattices,” Physica D 170 (2), 118–130 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Turaev, “Richness of chaos in the absolute Newhouse domain,” in Proc. Int. Congr. Math., Hyderabad (India), 2010, Vol. 3: Invited Lectures (World Scientific, Hackensack, NJ, 2011), pp. 1804–1815.

    Chapter  Google Scholar 

  60. D. Turaev, “Maps close to identity and universal maps in the Newhouse domain,” Commun. Math. Phys. 335 (3), 1235–1277 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  61. D. V. Turaev and L. P. Shil’nikov, “An example of a wild strange attractor,” Sb. Math. 189 (2), 291–314 (1998) [transl. from Mat. Sb. 189 (2), 137–160 (1998)].

    Article  MathSciNet  MATH  Google Scholar 

  62. D. V. Turaev and L. P. Shil’nikov, “Pseudohyperbolicity and the problem on periodic perturbations of Lorenztype attractors,” Dokl. Math. 77 (1), 17–21 (2008) [transl. from Dokl. Akad. Nauk 418 (1), 23–27 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  63. V. Vagner, “Geometric interpretation of the motion of nonholonomic dynamical systems,” in Proc. Semin. on Vector and Tensor Analysis with Applications to Geometry, Mechanics, and Physics (OGIZ, Moscow, 1941), No. 5, pp. 301–327 [in Russian].

    Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grants 17-11-01041 (Section 1 and Subsections 4.1, 4.2) and 18-71-00127 (Subsection 4.3) and by the Russian Foundation for Basic Research, project nos. 19-01-00607 (Section 3), 18-31-20052 (Subsection 2.1), and 18-29-10081 (Subsection 2.2). The first two authors also acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation (project no. 1.3287.2017). The third author was also supported in part by the HSE Basic Research Program (2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Gonchenko, A. S. Gonchenko or A. O. Kazakov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Vol. 308, pp. 135–151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchenko, S.V., Gonchenko, A.S. & Kazakov, A.O. Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion. Proc. Steklov Inst. Math. 308, 125–140 (2020). https://doi.org/10.1134/S0081543820010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820010101

Navigation