Skip to main content
Log in

Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The main contribution of this article is to introduce new compact fourth-order, standard fourth-order, and standard second-order finite difference schemes for solving the Kawahara equation, the fifth-order partial derivative equation. The conservation of mass only of the numerical solution obtained by the compact fourth-order finite difference scheme is proven. However, the standard fourth-order and standard second-order finite difference schemes can preserve both mass and energy. The stability is also proven by von Neumann analysis. According to analysis for numerical experiments, the order of accuracy for each scheme and the computational efficiency of the compact scheme are presented. To validate the potential of the presented methods, we also consider long-time behavior. Finally, results obtained from the compact scheme are superior than those from the non-compact schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kakutani, T., Ono, H.: Weak non-linear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Japan. 26(5), 1305–1318 (1969)

    Article  Google Scholar 

  2. Hasimoto, H.: Water waves. Kagaku 40, 401–408 (1970)

    Google Scholar 

  3. Iguchi, T.: A long wave approximation for capillary-gravity waves and the Kawahara equation. Bull. Inst. Math. Acad. Sin. (N.S.) 2, 179–220 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Kawahara, T.: Oscillatory solitary waves in dispersive media. Phys. Soc. Japan. 33(1), 260–264 (1972)

    Article  Google Scholar 

  5. Shukla, R.K., Tatineni, M., Zhong, X.: Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier-Stokes equations. J. Comput. Phys. 224, 1064–1094 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shah, A., Yuan, L., Khan, A.: Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations. Appl. Math. Comput. 215, 3201–3213 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Wongsaijai, B., Poochinapan, K., Disyadej, T.: A compact finite difference method for solving the general Rosenau-RLW equation. IAENG Int. J. Appl. Math. 44(4), 192–199 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Miyatake, Y., Matsuo, T.: Conservative finite difference schemes for the Degasperis-Procesi equation. J. Comput. Appl. Math. 236(15), 3728–3740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Miyatake, Y., Matsuo, T.: Energy-preserving H1-Galerkin schemes for shallow water wave equations with peakon solutions. Phys. Lett. A 376, 2633–2639 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Poochinapan, K., Wongsaijai, B., Disyadej, T.: Efficiency of high-order accurate difference schemes for the Korteweg-de Vries equation. Math. Probl. Eng 2014(862403), 8 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Yuan, J.M., Shen, J., Wu, J.: A dual-Petrov-Galerkin method for the Kawahara-type equations. J. Sci. Comput. 34, 48–63 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ezzati, R., Shakibi, K., Ghasemimanesh, M.: Using multiquadric quasi-interpolation for solving Kawahara equation. Int. J. Industrial Math. 3(2), 111–123 (2011)

    Google Scholar 

  13. Bibi, N., Tirmizi, S.I.A., Haq, S.: Meshless method of lines for numerical solution of Kawahara type equations. Appl. Math. 2, 608–618 (2011)

    Article  MathSciNet  Google Scholar 

  14. Suarez, P.U., Morales, J.H.: Fourier splitting method for Kawahara type equation. J. Comput. Methods in Phys. 2014(894956), 4 (2014)

    MATH  Google Scholar 

  15. Karakoc, B.G., Zeybek, H., AK, T.: Numerical solutions of the Kawahara equation by the septic B-spline collocation method. Stat. Optim. Inf. Comput. 2, 211–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korkmaz, A., Dag, I.: Crank-Nicolson-differential quadrature algorithms for the Kawahara equation. Chaos Solitons Fractals 42, 64–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bashan, A.: An efficient approximation to numerical solutions for the Kawahara equation via modified cubic B-spline differntial quadrature method. Mediterr. J. Math 16(14) (2019)

  18. Sepulveda, M., Villagran, O.P.V.: Numerical method for a transport equation perturbed by dispersive terms of 3rd and 5nd order. Sci. Ser. A Math. Sci. (N.S.) 13, 13–21 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Ceballos, J., Sepulveda, M., Villagran, O.P.V.: The Korteweg de Vries Kawahara equation in a boundary domain and numerical results. Appl. Math. Comput. 190(2), 912–936 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Koley, U.: Finite difference schemes for the Korteweg-de vries-Kawahara equation. Int. J. Numer. Anal. Model. 13(3), 344–367 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Omrani, K., Abidi, F., Achouri, T., Khiari, N.: A new conservative finite difference scheme for the Rosenau equation. Appl. Math. Comput. 201, 35–43 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Pan, X., Zhang, L.: A new finite difference scheme for the Rosenau-Burgers equation. Appl. Math. Comput. 218, 8917–8924 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Pan, X., Zhang, L.: On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. Appl. Math. Model. 36, 3371–3378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wongsaijai, B., Poochinapan, K.: A three-level average implicit finite difference scheme to solve equation obtainded by coupling the Rosenau-KdV equation and the Rosenau-RLW equation. Appl. Math. Comput. 245, 289–304 (2014)

    MathSciNet  MATH  Google Scholar 

  25. He, D., Pan, K.: A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation. Appl. Math. Comput. 271, 323–336 (2015)

    MathSciNet  MATH  Google Scholar 

  26. He, D.: Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation. Nonlinear Dynam. 85, 479–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Biswas, A.: Solitary wave solution for the generalized Kawahara equation. Appl. Math. Lett. 22, 208–210 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand and Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Poochinapan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chousurin, R., Mouktonglang, T., Wongsaijai, B. et al. Performance of compact and non-compact structure preserving algorithms to traveling wave solutions modeled by the Kawahara equation. Numer Algor 85, 523–541 (2020). https://doi.org/10.1007/s11075-019-00825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00825-4

Keywords

Navigation