Skip to main content
Log in

Innovative Approach to Evaluate the Mechanical Performance of Ti–6Al–4V Lattice Structures Produced by Electron Beam Melting Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Additive manufacturing processes allow producing complex geometries which include structures with enhanced mechanical performance and biomimetic properties. Among these structures, the interests on the use of lattice are increasing for both medical and mechanical applications. The mechanical behaviour of the structure is closely correlated to its shape and dimension. However, up to now, far too little attention has been paid to this aspect. Hence, this work aims to explore the effect of geometry, dimension and relative density of the cell structure on the compressive strength of specimens with lattice structures. For this purpose, various Lattice structures are designed with different geometries and dimensions. This approach leads to having structures with different relativity densities. Replicas of the designed structure are produced using Ti–6Al–4V powder processed by electron beam melting process. The samples are tested under compression. A new approach to calculate the absorbed energy up to failure by the lattice structure is presented. The results show a close relationship between the mechanical performance of the structure and the investigated parameters. In contrast with the current literature, the presented experimental data and a collection of the literature data highlight that the lattice structures with similar relative density do not exhibit the same Young’s modulus values.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. ASTM, F2792–12a—Standard Terminology for Additive Manufacturing Technologies (Rapid Manuf. Assoc., 2013), pp. 10–12.

  2. A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, An Overview of additive manufacturing of titanium components by Directed Energy Deposition: microstructure and mechanical properties. Appl. Sci. 7, 883 (2017)

    Article  Google Scholar 

  3. A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino, An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition. Mater. Sci. Eng. A 780, 139179 (2020)

    Article  CAS  Google Scholar 

  4. I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies, vol. 17 (Springer, Berlin, 2014)

    Google Scholar 

  5. A. Saboori et al., Production of single tracks of Ti–6Al–4V by Directed Energy Deposition to determine the layer thickness for multilayer deposition. J. Vis. Exp. 2018(133), e56966 (2018)

    Google Scholar 

  6. A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Application of Directed Energy Deposition-based additive manufacturing in repair. Appl. Sci. 9(16), 3316 (2019)

    Article  CAS  Google Scholar 

  7. M. Aristizabal, P. Jamshidi, A. Saboori, S.C. Cox, M.M. Attallah, Laser powder bed fusion of a Zr-alloy: tensile properties and biocompatibility. Mater. Lett. 259, 126897 (2020)

    Article  CAS  Google Scholar 

  8. A. Saboori et al., An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition. Mater. Sci. Eng. A 766, 138360 (2019)

    Article  CAS  Google Scholar 

  9. G. Del Guercio, M. Galati, A. Saboori, P. Fino, L. Iuliano, Microstructure and mechanical performance of Ti–6Al–4V lattice structures manufactured via electron beam melting (EBM): a review. Acta Metall. Sin. (Engl. Lett.) 33(2), 183–203 (2020)

    Article  Google Scholar 

  10. A. Saboori et al., Characterization of single track formation from Ti–6Al–4V alloy at different process parameters by Direct Energy Deposition, in Euro PM2017 Congress & Exhebition, 2017, pp. 1–5.

  11. F. Calignano, M. Galati, L. Iuliano, P. Minetola, Design of additively manufactured structures for biomedical applications: a review of the additive manufacturing processes applied to the biomedical sector. J. Healthc. Eng. 2019, 1–6 (2019).

  12. M. Galati, A. Snis, L. Iuliano, Experimental validation of a numerical thermal model of the EBM process for Ti6Al4V. Comput. Math. Appl. 78, 2417–2427 (2018)

    Article  Google Scholar 

  13. A. Mitchell, Melting, casting and forging problems in titanium alloys. Mater. Sci. Eng. A 243(1–2), 257–262 (1998)

    Article  Google Scholar 

  14. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Effects of heat treatments on microstructure and properties of Ti–6Al–4V ELI alloy fabricated by electron beam melting (EBM). Mater. Sci. Eng. A 685, 417–428 (2017)

    Article  CAS  Google Scholar 

  15. M. Galati, P. Minetola, G. Rizza, Surface roughness characterisation and analysis of the electron beam melting (EBM) process. Materials (Basel) 12(13), 2211 (2019)

    Article  CAS  Google Scholar 

  16. W. He, W. Jia, H. Liu, H. Tang, X. Kang, Y. Huang, Research on preheating of titanium alloy powder in electron beam melting technology. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 40(12), 2072–2075 (2011)

    CAS  Google Scholar 

  17. N.A. Fleck, V.S. Deshpande, M.F. Ashby, Micro-architectured materials: Past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2121), 2495–2516 (2010)

    CAS  Google Scholar 

  18. A.G. Evans, J.W. Hutchinson, M.F. Ashby, Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43(3), 171–221 (1998)

    Article  CAS  Google Scholar 

  19. L.E. Murr et al., Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1917), 1999–2032 (2010)

    Article  CAS  Google Scholar 

  20. M. Niinomi, Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33(3), 477 (2002)

    Article  Google Scholar 

  21. J.-W. Park, H.-K. Kim, Y.-J. Kim, J.-H. Jang, H. Song, T. Hanawa, Osteoblast response and osseointegration of a Ti–6Al–4V alloy implant incorporating strontium. Acta Biomater. 6(7), 2843–2851 (2010)

    Article  CAS  Google Scholar 

  22. M.F. Ashby, The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1838), 15–30 (2006)

    Article  CAS  Google Scholar 

  23. J.C. Maxwell, L. on the calculation of the equilibrium and stiffness of frames. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27(182), 294–299 (1864)

    Article  Google Scholar 

  24. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  25. H.R. Vladimir Popov, A. Katz-Demyanetz, A. Garkun, G. Muller, E. Strokin et al., Effect of hot isostatic pressure treatment on the electron-beam melted Ti–6Al–4V specimens. Procedia Manuf. 21, 125–132 (2018)

    Article  Google Scholar 

  26. C. De Formanoir, S. Michotte, O. Rigo, L. Germain, S. Godet, Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater. Sci. Eng. A 652, 105–119 (2016)

    Article  Google Scholar 

  27. C. de Formanoir, M. Suard, R. Dendievel, G. Martin, S. Godet, Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching. Addit. Manuf. 11, 71–76 (2016)

    Google Scholar 

  28. Y. Zhai, H. Galarraga, D.A. Lados, Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti–6Al–4V alloys fabricated by two additive manufacturing techniques. Procedia Eng. 114, 658–666 (2015)

    Article  CAS  Google Scholar 

  29. R. Cunningham et al., Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti–6Al–4V. Mater. Res. Lett. 5(7), 516–525 (2017)

    Article  CAS  Google Scholar 

  30. K.S. Chan, M. Koike, R.L. Mason, T. Okabe, Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall. Mater. Trans. A 44(2), 1010–1022 (2013)

    Article  CAS  Google Scholar 

  31. S.J. Li et al., Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 60(3), 793–802 (2012)

    Article  CAS  Google Scholar 

  32. X.Y. Cheng et al., Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 16, 153–162 (2012)

    Article  CAS  Google Scholar 

  33. W. van Grunsven, E. Hernandez-Nava, G. Reilly, R. Goodall, Fabrication and mechanical characterisation of titanium lattices with graded porosity. Metals (Basel) 4(3), 401–409 (2014)

    Article  Google Scholar 

  34. M. Jamshidinia, L. Wang, W. Tong, R. Kovacevic, The bio-compatible dental implant designed by using non-stochastic porosity produced by electron beam melting®(EBM). J. Mater. Process. Technol. 214(8), 1728–1739 (2014)

    Article  CAS  Google Scholar 

  35. L. Xiao, W. Song, C. Wang, H. Liu, H. Tang, J. Wang, Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure. Mater. Sci. Eng. A 640, 375–384 (2015)

    Article  CAS  Google Scholar 

  36. J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 3(3), 249–259 (2010)

    Article  Google Scholar 

  37. O. Cansizoglu, O. Harrysson, D. Cormier, H. West, T. Mahale, Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Mater. Sci. Eng. A 492(1–2), 468–474 (2008)

    Article  Google Scholar 

  38. L. Xiao et al., Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading. Int. J. Impact Eng. 100, 75–89 (2017)

    Article  Google Scholar 

  39. M. Suard, P. Lhuissier, R. Dendievel, J.-J. Blandin, F. Vignat, F. Villeneuve, Towards stiffness prediction of cellular structures made by electron beam melting (EBM). Powder Metall. 57(3), 190–195 (2014)

    Article  CAS  Google Scholar 

  40. T.J. Horn, O.L.A. Harrysson, D.J. Marcellin-Little, H.A. West, B.D.X. Lascelles, R. Aman, Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting. Addit. Manuf. 1, 2–11 (2014)

    Google Scholar 

  41. E. Hernández-Nava et al., The effect of density and feature size on mechanical properties of isostructural metallic foams produced by additive manufacturing. Acta Mater. 85, 387–395 (2015)

    Article  Google Scholar 

  42. J. Parthasarathy, B. Starly, S. Raman, A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manuf. Process. 13(2), 160–170 (2011)

    Article  Google Scholar 

  43. L.E. Murr et al., Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 527(7), 1861–1868 (2010)

    Article  Google Scholar 

  44. Arcam, Ti6Al4V Titanium Alloy (Arcam AB, Mölndal, Sweden, 2014), pp. 4–6.

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

GDG: Experiment, data collection, Writing the first draft, MG: Data Curation, Investigation, Writing—review and editing, Supervision, AS: Conceptualization, Investigation, Validation, Writing—review and editing, Supervision.

Corresponding author

Correspondence to Abdollah Saboori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Guercio, G., Galati, M. & Saboori, A. Innovative Approach to Evaluate the Mechanical Performance of Ti–6Al–4V Lattice Structures Produced by Electron Beam Melting Process. Met. Mater. Int. 27, 55–67 (2021). https://doi.org/10.1007/s12540-020-00745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00745-2

Keywords

Navigation