Skip to main content
Log in

On the tuning of static pull-in instability and nonlinear vibrations of functionally graded micro-resonators with three different configurations

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the vibrational behavior of a functionally graded (FG) micro-resonator is investigated for three different configurations based on the Euler–Bernoulli beam model and the Von Karman nonlinear strain assumption. The three configurations include: (1) an FG micro-resonator with a fixed foundation, (2) piezoelectric layers added to the first model, and (3) a second fixed foundation added to the first model. These investigations are performed under the effect of electrostatic forces, the forces caused by the deformations of piezoelectric layers due to the applied voltage, Casimir forces, and uniform temperature changes. The equations governing the vibrational behaviors are obtained using the Hamilton’s principle and the modified couple stress theory. Static deformations and the fundamental vibrational mode are calculated using the differential quadrature method in the spatial domain for all three configurations. Furthermore, the dynamic equations are obtained from the Galerkin discretization and solved with multiple time scales technique. The results show that the frequency behavior of a micro-resonator can be adjusted using the three models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Esfahani S, Khadem SE, Mamaghani AE (2019) Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory. Int J Mech Sci 1(151):508–522

    Article  Google Scholar 

  2. Naeeni IP, Keshavarzi A, Fattahi I (2019) Parametric study on the geometric and kinetic aspects of the slider-crank mechanism. Iran J Sci Technol Trans Mech Eng 43(3):405–417

    Article  Google Scholar 

  3. Malekzadeh P, Shojaee M (2013) Free vibration of nanoplates based on a nonlocal two-variable refined plate theory. Compos Struct 1(95):443–452

    Article  Google Scholar 

  4. Rahmati M, Khodaei S (2018) Nonlocal vibration and instability analysis of carbon nanotubes conveying fluid considering the influences of nanoflow and non-uniform velocity profile. Microfluid Nanofluid 22(10):117

    Article  Google Scholar 

  5. Fattahi I, Mirdamadi HR (2020) Electro-vibration modeling and response of 3D skeletal frame configuration for energy harvesters. Extreme Mech Lett 4:100646

    Article  Google Scholar 

  6. Malekzadeh P, Haghighi MG, Shojaee M (2014) Nonlinear free vibration of skew nanoplates with surface and small scale effects. Thin Walled Struct 1(78):48–56

    Article  Google Scholar 

  7. Liu W, Wu B, Lim CW (2017) Linear and nonlinear free vibrations of electrostatically actuated micro-/nanomechanical resonators. Microsyst Technol 23(1):113–123

    Article  Google Scholar 

  8. SoltanRezaee M, Bodaghi M, Farrokhabadi A, Hedayati R (2019) Nonlinear stability analysis of piecewise actuated piezoelectric microstructures. Int J Mech Sci 1(160):200–208

    Article  Google Scholar 

  9. Miandoab EM, Yousefi-Koma A, Pishkenari HN, Tajaddodianfar F (2015) Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun Nonlinear Sci Numer Simul 22(1):611–622

    Article  Google Scholar 

  10. Bahadoran M, Noorden AF, Chaudhary K, Aziz MS, Ali J, Yupapin P (2014) Nano force sensing using symmetric double stage micro resonator. Measurement 31(58):215–220

    Article  Google Scholar 

  11. Mestrom RM, Fey RH, Phan KL, Nijmeijer H (2010) Simulations and experiments of hardening and softening resonances in a clamped–clamped beam MEMS resonator. Sens Actuators A 162(2):225–234

    Article  Google Scholar 

  12. Miandoab EM, Yousefi-Koma A, Pishkenari HN, Fathi M (2014) Nano-resonator frequency response based on strain gradient theory. J Phys D Appl Phys 47(36):365303

    Article  Google Scholar 

  13. Azizi S, Ghazavi MR, Rezazadeh G, Ahmadian I, Cetinkaya C (2014) Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn 76(1):839–852

    Article  MATH  Google Scholar 

  14. Najar F, Choura S, Abdel-Rahman EM, El-Borgi S, Nayfeh AH (2006 Jan 1) Dynamics of variable-geometry electrostatic microactuators. In: ASME 2006 international mechanical engineering congress and exposition. American Society of Mechanical Engineers, New York, pp 273–281

  15. Pamidighantam S, Puers R, Baert K, Tilmans HA (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed-free end conditions. J Micromech Microeng 12(4):458

    Article  Google Scholar 

  16. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  17. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  18. Nayfeh AH, Younis MI, Abdel-Rahman EM (2007) Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn 48(1–2):153–163

    Article  MATH  Google Scholar 

  19. Nguyen CC, Ngo VK, Le HQ, Li WL (2019) Influences of relative humidity on the quality factors of MEMS cantilever resonators in gas rarefaction. Microsyst Technol 25(7):2767–2782

    Article  Google Scholar 

  20. Chen HY, Wang KC, Shen HC, Yang CH (2018) Synchronization of uncertain MEMS resonators via adaptive time-varying terminal sliding mode control. Microsyst Technol 2018:1–7

    Google Scholar 

  21. Mohammadi M, Eghtesad M, Mohammadi H (2017) Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int J Mech Mater Des 14:1–26

    Google Scholar 

  22. Ghashami G, Khaleghian M, Sabooni M, Jam JE (2016) An exact solution for size-dependent frequencies of micro-beam resonators by considering the thermo-elastic coupling terms. J Braz Soc Mech Sci Eng 38(7):1947–1957

    Article  Google Scholar 

  23. Fattahi I, Mirdamadi HR (2017) Novel composite finite element model for piezoelectric energy harvesters based on 3D beam kinematics. Compos Struct 1(179):161–171

    Article  Google Scholar 

  24. Fattahi I, Mirdamadi HR (2020) A novel multimodal and multidirectional energy harvester by asymmetric 3D skeletal frame structures. J Braz Soc Mech Sci Eng 42:274. https://doi.org/10.1007/s40430-020-02369-4

    Article  Google Scholar 

  25. Fattahi I, Mirdamadi HR (2019) A novel 3D skeletal frame topology for energy harvesting systems. Microelectron J 1(83):6–17

    Article  Google Scholar 

  26. Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36(5):1875–1884

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang YG, Song HF, Lin WH, Xu L (2017) Large deflection analysis of functionally graded circular microplates with modified couple stress effect. J Braz Soc Mech Sci Eng 39(3):981–991

    Article  Google Scholar 

  28. Gorgani HH, Adeli MM, Hosseini M (2019) Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches. Microsyst Technol 25(8):3165–3173

    Article  Google Scholar 

  29. Hasanyan DJ, Batra RC, Harutyunyan S (2008) Pull-in instabilities in functionally graded microthermoelectromechanical systems. J Therm Stresses 31(10):1006–1021

    Article  Google Scholar 

  30. Mohammadi-Alasti B, Rezazadeh G, Borgheei AM, Minaei S, Habibifar R (2011) On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos Struct 93(6):1516–1525

    Article  Google Scholar 

  31. Zhong ZY, Zhou JP, Zhang HL (2017) Thermoelastic damping in functionally graded microbeam resonators. IEEE Sens J 17(11):3381–3390

    Article  Google Scholar 

  32. SoltanRezaee M, Bodaghi M (2020) Nonlinear dynamic stability of piezoelectric thermoelastic electromechanical resonators. Sci Rep 10(1):1–4

    Article  Google Scholar 

  33. Jia XL, Ke LL, Feng CB, Yang J, Kitipornchai S (2015) Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change. Compos Struct 1(133):1137–1148

    Article  Google Scholar 

  34. Trinh LC, Nguyen HX, Vo TP, Nguyen TK (2016) Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory. Compos Struct 15(154):556–572

    Article  Google Scholar 

  35. Shafiei N, Mousavi A, Ghadiri M (2016) Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Compos Struct 1(149):157–169

    Article  Google Scholar 

  36. Xie X, Zheng H, Yang H (2015) Indirect radial basis function approach for bending, free vibration and buckling analyses of functionally graded microbeams. Compos Struct 1(131):606–615

    Article  Google Scholar 

  37. Malekzadeh P, Shenas AG, Ziaee S (2018) Thermal buckling of functionally graded triangular microplates. J Braz Soc Mech Sci Eng 40(9):418

    Article  Google Scholar 

  38. Khorshidi MA, Shariati M (2016) Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J Braz Soc Mech Sci Eng 38(8):2607–2619

    Article  Google Scholar 

  39. Rafiee M, He XQ, Liew KM (2014) Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int J Nonlinear Mech 1(59):37–51

    Article  Google Scholar 

  40. Attia MA, Mohamed SA (2017) Nonlinear modeling and analysis of electrically actuated viscoelastic microbeams based on the modified couple stress theory. Appl Math Model 31(41):195–222

    Article  MATH  MathSciNet  Google Scholar 

  41. Lamoreaux SK (2004) The Casimir force: background, experiments, and applications. Rep Prog Phys 68(1):201

    Article  Google Scholar 

  42. Mohammadi M, Eghtesad M, Mohammadi H, Necsulescu D (2017) Nonlinear robust adaptive multi-modal vibration control of bi-electrode micro-switch with constraints on the input. Micromachines 8(9):263

    Article  Google Scholar 

  43. Mohammadi M, Eghtesad M, Mohammadi H (2018) Stochastic analysis of pull-in instability of geometrically nonlinear size-dependent FGM micro beams with random material properties. Compos Struct 200:466–479

    Article  Google Scholar 

  44. Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos Struct 1(99):193–201

    Article  Google Scholar 

  45. Shen HS (2016) Functionally graded materials: nonlinear analysis of plates and shells. CRC Press, Boca Raton

    Book  Google Scholar 

  46. Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 1(96):716–725

    Article  Google Scholar 

  47. Bodaghi M, Damanpack AR, Aghdam MM, Shakeri M (2012) Non-linear active control of FG beams in thermal environments subjected to blast loads with integrated FGP sensor/actuator layers. Compos Struct 94(12):3612–3623

    Article  Google Scholar 

  48. Kiani Y, Taheri S, Eslami MR (2011) Thermal buckling of piezoelectric functionally graded material beams. J Therm Stresses 34(8):835–850

    Article  Google Scholar 

  49. Najar F, Choura S, Abdel-Rahman EM, El-Borgi S, Nayfeh A (2006) Dynamic analysis of variable-geometry electrostatic microactuators. J Micromech Microeng 16(11):2449

    Article  MATH  Google Scholar 

  50. Legtenberg R, Tilmans HA (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators: Part II. Theory and performance. Design and fabrication. Sens Actuators A Phys 45(1):57–84

    Article  Google Scholar 

  51. Malekzadeh P, Shojaee M (2013) Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos B Eng 52:84–92

    Article  Google Scholar 

  52. Eftekhari S (2015) A modified differential quadrature procedure for numerical solution of moving load problem. Proc Inst Mech Eng Part C J Mech Eng Sci 230(5):715–731

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Fattahi.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In differential quadrature method, the domain is discretized in N grid points along the x-direction. At a given grid point \(x_{i}\), derivatives of a function can be approximated as [51]:

$$\begin{aligned} \left. {\frac{{\partial f\left( {x,t} \right)}}{\partial x}} \right|_{{x = x_{i} }} & = \mathop \sum \limits_{j = 1}^{N} A_{ij} f\left( {x_{j} ,t} \right) = \mathop \sum \limits_{j = 1}^{N} A_{ij} f_{j} \left( t \right),\left. {\frac{{\partial^{2} f\left( {x,t} \right)}}{{\partial x^{2} }}} \right|_{{x = x_{i} }} = \mathop \sum \limits_{j = 1}^{N} B_{ij} f_{j} \left( t \right), \\ \left. {\frac{{\partial^{3} f\left( {x,t} \right)}}{{\partial x^{3} }}} \right|_{{x = x_{i} }} & = \mathop \sum \limits_{j = 1}^{N} C_{ij} f_{j} \left( t \right),\left. {\frac{{\partial^{4} f\left( {x,t} \right)}}{{\partial x^{4} }}} \right|_{{x = x_{i} }} = \mathop \sum \limits_{j = 1}^{N} D_{ij} f_{j} \left( t \right). \\ \end{aligned}$$

\(A_{ij} ,B_{ij} ,C_{ij}\) and \(D_{ij}\) denote the weighting coefficients, which are used in the first-, second-, third- and fourth-order derivatives, respectively. \(A_{ij}\) is determined as follows:

$$A_{ij} = \left\{ {\begin{array}{*{20}l} {\frac{1}{L}\frac{{M\left( {x_{i} } \right)}}{{\left( {x_{i} - x_{j} } \right)M\left( {x_{j} } \right)}}} \hfill & {{\text{for}}\quad i \ne j} \hfill \\ {\mathop{\mathop{\sum}\limits_{i = 1}}\limits_{i \ne j}}^{N} A_{ij} \hfill & {{\text{for}}\quad i = j} \hfill \\ \end{array} } \right.\quad i,j = 1,2, \ldots ,N,$$

where \(M\left( {x_{i} } \right) = \mathop \prod \nolimits_{j = 1}^{N} \left( {x_{i} - x_{j} } \right)\). Other weighting coefficients are calculated based on \(A_{ij}\) as:

$$B_{ij} = \left[ { A_{ij} } \right]^{2} ,\quad C_{ij} = \left[ { A_{ij} } \right]^{3} ,\quad D_{ij} = \left[ { A_{ij} } \right]^{4} .$$

and

$$\bar{D}_{ij} = \mathop \sum \limits_{m = 2}^{N - 1} B_{im} B_{mj}\quad \kappa = \frac{{\partial^{2} w}}{{\partial x^{2} }}$$

The weighting coefficients of the IQM can be written in the following form [52]:

$$\left\{ R \right\} = \left[ X \right]^{ - 1} \left\{ I \right\}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M.J., Sharifi, P., Fattahi, I. et al. On the tuning of static pull-in instability and nonlinear vibrations of functionally graded micro-resonators with three different configurations. J Braz. Soc. Mech. Sci. Eng. 42, 339 (2020). https://doi.org/10.1007/s40430-020-02426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02426-y

Keywords

Navigation