Skip to main content
Log in

Hydrogen bonds in anoplin peptides aid in identification of a structurally stable therapeutic drug scaffold

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Multi-drug resistance is a major issue faced by the global pharmaceutical industry. Short antimicrobial peptides such as anoplins can be used to replace antibiotics, thus mitigating this issue. Antimicrobial activity, non-toxicity, and structural stability are essential features of a therapeutic drug. Antimicrobial activity and toxicity to human erythrocytes have been previously reported for anoplin and anoplin R5K T8W. This study attempts to identify a therapeutic peptide drug scaffold between these peptides by examining their structural stability, mainly based on the hydrogen bonds (H-bond) found in their structures. The static structure of anoplin R5K T8W displayed lower H-bond distances than anoplin, thereby exhibiting enhanced structural stability. Dynamic stability studies revealed that conformers of anoplin R5K T8W exhibited lower hydrogen bond distances (HBDs), higher H-bond occupancies, and higher radial distribution function (RDF) of H-bonds in comparison with conformers of anoplin. Furthermore, conformers of anoplin R5K T8W generated using 50-ns molecular dynamics simulation displayed lower conformational free energy than anoplin, thus establishing its higher structural stability. Overall, anoplin R5K T8W can be claimed as a promising scaffold that may be used for therapeutic purposes. In conclusion, H-bonds play a major role in structural stability and may aid in identification of a therapeutic peptide scaffold.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 9:491–511. https://doi.org/10.1128/CMR.00056-05

    Article  CAS  Google Scholar 

  2. Phambu N, Almarwani B, Garcia AM, Hamza NS, Muhsen A, Baidoo JE, Sunda-Meya A (2017) Chain length effect on the structure and stability of antimicrobial peptides of the (RW) n series. Biophys Chem 227:8–13. https://doi.org/10.1016/j.bpc.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  3. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286. https://doi.org/10.3390/molecules171012276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17:603. https://doi.org/10.3390/ijms17050603

    Article  CAS  PubMed Central  Google Scholar 

  5. Rausch JM, Marks JR, Rathinakumar R, Wimley WC (2007) β-Sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes. Biochemistry 46:12124–12139. https://doi.org/10.1021/bi700978h

    Article  CAS  PubMed  Google Scholar 

  6. Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sci 2:1–33. https://doi.org/10.2478/s11535-007-0010-5

    Article  CAS  Google Scholar 

  7. Herbel V, Wink M (2016) Mode of action and membrane specificity of the antimicrobial peptide snakin-2. PeerJ 4:e1987. https://doi.org/10.7717/peerj.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dos Santos Cabrera MP, Arcisio-Miranda M, Broggio Costa ST, Konno K, Ruggiero JR, Procopio J, Ruggiero Neto J (2008) Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidated C-terminus. J Pept Sci 14:661–669. https://doi.org/10.1002/psc.960

    Article  CAS  PubMed  Google Scholar 

  9. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:PMC-S14459. https://doi.org/10.4137/PMC.S14459

    Article  Google Scholar 

  10. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47. https://doi.org/10.3389/fmicb.2013.00047

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti-Infect Ther 12:1477–1486. https://doi.org/10.1586/14787210.2014.976613

    Article  CAS  PubMed  Google Scholar 

  12. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040. https://doi.org/10.1007/s00253-015-6375-x

    Article  CAS  PubMed  Google Scholar 

  14. Lau L, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  15. Pennington MW, Czerwinski A, Norton RS (2018) Peptide therapeutics from venom: current status and potential. Bioorg Med Chem 26:2738–2758. https://doi.org/10.1016/j.bmc.2017.09.029

    Article  CAS  PubMed  Google Scholar 

  16. Munk JK, Ritz C, Fliedner FP, Frimodt-Møller N, Hansen PR (2014) Novel method to identify the optimal antimicrobial peptide in a combination matrix, using anoplin as an example. Antimicrob Agents Chemother 58:1063–1070. https://doi.org/10.1128/AAC.02369-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konno K, Hisada M, Fontana R, Lorenzi CC, Naoki H, Itagaki Y, Miwa A, Kawai N, Nakata Y, Yasuhara T, Neto JR (2001) Anoplin, a novel antimicrobial peptide from the venom of the solitary wasp Anoplius samariensis. Biochim Biophys Acta Protein Struct Mol Enzymol 1550:70–80. https://doi.org/10.1016/S0167-4838(01)00271-0

    Article  CAS  Google Scholar 

  18. Munk JK, Uggerhøj LE, Poulsen TJ, Frimodt-Møller N, Wimmer R, Nyberg NT, Hansen PR (2013) Synthetic analogs of anoplin show improved antimicrobial activities. J Pept Sci 19:669–675. https://doi.org/10.1002/psc.2548

    Article  CAS  PubMed  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uggerhøj LE, Poulsen TJ, Munk JK, Fredborg M, Sondergaard TE, Frimodt-Moller N, Hansen PR, Wimmer R (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. ChemBioChem 16:242–253. https://doi.org/10.1002/cbic.201402581

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Chen J, Zheng X, Yang X, Ma P, Cai Y, Zhang B, Chen Y (2014) Design of novel analogs of short antimicrobial peptide anoplin with improved antimicrobial activity. J Pept Sci 20:945–951. https://doi.org/10.1002/psc.2705

    Article  CAS  PubMed  Google Scholar 

  22. Krieger E YASARA Version 16.11.20. Bioinformatics 30 (© 1993–2016):2891–2892

  23. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins Struct Funct Bioinf 57:678–683. https://doi.org/10.1002/prot.20251

    Article  CAS  Google Scholar 

  24. Baker EN, Hubbard RE (1984) Hydrogen bonding in globular proteins. Prog Biophys Mol Biol 44:97–179. https://doi.org/10.1016/0079-6107(84)90007-5

    Article  CAS  PubMed  Google Scholar 

  25. Mills JEJ, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 10:607–622. https://doi.org/10.1007/BF00134183

    Article  PubMed  Google Scholar 

  26. Remer LC, Jensen JH (2000) Toward a general theory of hydrogen bonding: the short, strong hydrogen bond [HOH OH]. J Phys Chem A 104:9266–9275. https://doi.org/10.1021/jp002726n

    Article  CAS  Google Scholar 

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  28. Saravanan KM, Selvaraj S (2017) Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. J Biol Phys 43:265–278. https://doi.org/10.1007/s10867-017-9451-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500–W502. https://doi.org/10.1093/nar/gkh429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sforça ML, Oyama S, Canduri F, Lorenzi CC, Pertinhez TA, Konno K, Souza BM, Palma MS, Ruggiero Neto J, Azevedo WF, Spisni A (2004) How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43:5608–5617. https://doi.org/10.1021/bi0360915

    Article  CAS  PubMed  Google Scholar 

  31. Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky AV, Dennison SR, Phoenix DA (2016) The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 45:195–207. https://doi.org/10.1007/s00249-015-1094-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Microsoft ® Word ® for Office 365 MSO (16.0.11425.20200), Version 1903, 32-bit, OFFICE 2016 DESKTOP

  33. Paint, Microsoft Windows, Version 1809, (OS Build 17763.404), © 2018 Microsoft Corporation

  34. Seeliger D, Haas J, De Groot BL (2007) Geometry-based sampling of conformational transitions in proteins. Structure 15:1482–1492. https://doi.org/10.1016/j.str.2007.09.017

    Article  CAS  PubMed  Google Scholar 

  35. Bekker H, Berendsen HJC, Dijkstra EJ, Achterop S, van Drunen R, van der Spoel D, Sijbers A, Keegstra H, Reitsma B, Renardus MKR (1993) Gromacs: a parallel computer for molecular dynamics simulations. In: de Groot RA, Nadrchal J (eds.) Physics Computing 92. World Scientific 252-256

  36. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. https://doi.org/10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  37. Lindahl E, Hess B, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  38. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  40. Pedretti A, Villa L, Vistoli G (2004) VEGA–an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18:167–173. https://doi.org/10.1023/B:JCAM.0000035186.90683.f2

    Article  CAS  PubMed  Google Scholar 

  41. Microsoft ® Excel ® for Office 365 MSO (16.0.11425.20200), Version 1903, 32-bit, OFFICE 2016 DESKTOP

  42. Chen J, Wang J, Zhang Q, Chen K, Zhu W (2015) A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation. J Biomol Struct Dyn 33:2606–2618. https://doi.org/10.1080/07391102.2014.1003146

    Article  CAS  PubMed  Google Scholar 

  43. Azam SS, Abro A, Raza S (2015) Binding pattern analysis and structural insight into the inhibition mechanism of sterol 24-C methyltransferase by docking and molecular dynamics approach. J Biomol Struct Dyn 33:2563–2577. https://doi.org/10.1080/07391102.2014.1002423

    Article  CAS  PubMed  Google Scholar 

  44. StatPlus, AnalystSoft Inc.-statistical analysis program. Version v6. See http://www.analystsoft.com/en/

  45. Vadivel K, Namasivayam G (2009) An estimate of the numbers and density of low-energy structures (or decoys) in the conformational landscape of proteins. PLoS One 4:e5418. https://doi.org/10.1371/journal.pone.0005148

    Article  CAS  Google Scholar 

  46. Liu S, Zhang C, Zhou H, Zhou Y (2004) A physical reference state unifies the structure-derived potential of mean force for protein folding and binding. Proteins 56:93–101. https://doi.org/10.1002/prot.20019

    Article  CAS  PubMed  Google Scholar 

  47. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11:2714–2726. https://doi.org/10.1110/ps.0217002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kusunoki H, MacDonald RI, Mondragón A (2004) Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure. 12:645–656. https://doi.org/10.1016/j.str.2004.02.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Vellore Institute of Technology (Deemed to be University) for providing “VIT SEED GRANT” for carrying out this research work.

Data availability statement

Data other than supplementary data will be made available on request.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Shruti Sunil Ranade; methodology: Shruti Sunil Ranade; formal analysis and investigation: Shruti Sunil Ranade; writing—original draft preparation: Shruti Sunil Ranade; writing—review and editing: Rajasekaran Ramalingam; funding acquisition: Rajasekaran Ramalingam; resources: Rajasekaran Ramalingam; supervision: Rajasekaran Ramalingam.

Corresponding author

Correspondence to Rajasekaran Ramalingam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 636 kb)

ESM 2

(DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranade, S.S., Ramalingam, R. Hydrogen bonds in anoplin peptides aid in identification of a structurally stable therapeutic drug scaffold. J Mol Model 26, 155 (2020). https://doi.org/10.1007/s00894-020-04380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04380-x

Keywords

Navigation