Skip to main content

Advertisement

Log in

Spinal fusion procedures in the adult and young population: a systematic review on allogenic bone and synthetic grafts when compared to autologous bone

  • Clinical Applications of Biomaterials
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This systematic review aims to compare clinical evidences related to autologous iliac crest bone graft (ICBG) and non-ICBG (local bone) with allografts and synthetic grafts for spinal fusion procedures in adult and young patients. A systematic search was carried out in three databases (PubMed, Scopus, Web of Science, Cochrane Central Register of Controlled Trials) to identify clinical studies in the last 10 years. The initial search retrieved 1085 studies, of which 24 were recognized eligible for the review. Twelve studies (4 RCTs, 5 prospective, 3 retrospective) were focused on lumbar spine, 9 (2 RCTs, 2 prospective, 4 retrospective, 1 case-series) on cervical spine and 3 (1 RCT, 2 retrospective) on spinal fusion procedures in young patients. Calcium phosphate ceramics, allografts, bioglasses, composites and polymers have been clinically investigated as substitutes of autologous bone in spinal fusion procedures. Of the 24 studies included in this review, only 1 RCT on cervical spine was classified with high level of evidence (Class I) and showed low risk of bias. This RCT demonstrated the safety and efficacy of the proposed treatment, a composite bone substitute, that results in similar and on some metrics superior outcomes compared with local autograft bone. Almost all other studies showed moderately or, more often, high incidence of bias (Class III), thus preventing ultimate conclusion on the hypothesized beneficial effects of allografts and synthetic grafts. This review suggests that users of allografts and synthetic grafting should carefully consider the scientific evidence concerning efficacy and safety of these bone substitutes, in order to select the best option for patient undergoing spinal fusion procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta A, Kukkar N, Sharif K, Main BJ, Albers CE, El-Amin Iii SF. Bone graft substitutes for spine fusion: a brief review. World J Orthop. 2015;6:449–56.

    Article  Google Scholar 

  2. Cortesi PA, Assietti R, Cuzzocrea F, Prestamburgo D, Pluderi M, Cozzolino P, Tito P, Vanelli R, Cecconi D, Borsa S, Cesana G, Mantovani LG. Epidemiologic and economic burden attributable to first spinal fusion surgery: analysis from an Italian Administrative Database. Spine (1976). 2017;42:1398–404.

    Article  Google Scholar 

  3. Campbell RC, Mobbs RJ, Lu VM, Xu J, Rao PJ, Phan K. Posterolateral fusion versus interbody fusion for degenerative spondylolisthesis: systematic review and meta-analysis. Global Spine J. 2017;7:482–90.

    Article  Google Scholar 

  4. Kornblum MB, Fischgrund JS, Herkowitz HN, Abraham DA, Berkower DL, Ditkoff JS. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective long-term study comparing fusion and pseudarthrosis. Spine (1976). 2004;29:726–33.

    Article  Google Scholar 

  5. Fischgrund JS, Mackay M, Herkowitz HN, Brower R, Montgomery DM, Kurz LT. Volvo Award winner in clinical studies. Degenerative lumbar spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodesis with and without spinal instrumentation. Spine (1976). 1997;22:2807–12.

    Article  CAS  Google Scholar 

  6. Fritzell P, Hägg O, Wessberg P, Nordwall A, Swedish Lumbar Spine Study Group. Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group. Spine (1976). 2002;27:1131–41.

    Article  Google Scholar 

  7. Kurd M, Cohick S, Park A, Ahmadinia K, Lee J, An H. Fusion in degenerative spondylolisthesis: comparison of osteoconductive and osteoinductive bone graft substitutes. Eur Spine J. 2015;24:1066–73.

    Article  Google Scholar 

  8. Miyazaki M, Tsumura H, Wang JC, Alanay A. An update on bone substitutes for spinal fusion. Eur Spine J. 2009;18:783–99.

    Article  Google Scholar 

  9. Irmola TM, Häkkinen A, Järvenpää S, Marttinen I, Vihtonen K, Neva M. Reoperation rates following instrumented lumbar spine fusion. Spine (1976). 2018;43:295–301.

    Article  Google Scholar 

  10. Kim YJ, Lenke LG, Kim J, Bridwell KH, Cho SK, Cheh G, Sides B. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine (1976). 2006;31:291–8.

    Article  Google Scholar 

  11. Boden SD, Grob D, Damien C. Ne-Osteo bone growth factor for posterolateral lumbar spine fusion: results from a nonhuman primate study and a prospective human clinical pilot study. Spine (1976). 2004;29:504–14.

    Article  Google Scholar 

  12. Ohtori S, Koshi T, Yamashita M, Takaso M, Yamauchi K, Inoue G, Suzuki M, Orita S, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Ishikawa T, Arai G, Miyagi M, Kamoda H, Suzuki M, Nakamura J, Furuya T, Toyone T, Yamagata M, Takahashi K. Single-level instrumented posterolateral fusion versus non-instrumented anterior interbody fusion for lumbar spondylolisthesis: a prospective study with a 2-year follow-up. J Orthop Sci. 2011;16:352–8.

    Article  Google Scholar 

  13. Ito Z, Imagama S, Kanemura T, Hachiya Y, Miura Y, Kamiya M, Yukawa Y, Sakai Y, Katayama Y, Wakao N, Matsuyama Y, Ishiguro N. Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J. 2013;22:1158–63.

    Article  Google Scholar 

  14. Sengupta DK, Truumees E, Patel CK, Kazmierczak C, Hughes B, Elders G, Herkowitz HN. Outcome of local bone versus autogenous iliac crest bone graft in the instrumented posterolateral fusion of the lumbar spine. Spine (1976). 2006;31:985–91.

    Article  Google Scholar 

  15. Tuchman A, Brodke DS, Youssef JA, Meisel HJ, Dettori JR, Park JB, Yoon ST, Wang JC. Iliac crest bone graft versus local autograft or allograft for lumbar spinal fusion: a systematic review. Global Spine J. 2016;6:592–606.

    Article  Google Scholar 

  16. Weinstein JN, Lurie JD, Olson PR, Bronner KK, Fisher ES. United States’ trends and regional variations in lumbar spine surgery: 1992−2003. Spine (1976). 2006;31:2707–14.

    Article  Google Scholar 

  17. Vaccaro AR, Chiba K, Heller JG, Patel TCH, Thalgott JS, Truumees E, Fischgrund JS, Craig MR, Berta SC, Wang JC. North American Spine Society for Contemporary Concepts in Spine Care. Bone grafting alternatives in spinal surgery. Spine J. 2002;2:206–15.

    Article  Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  Google Scholar 

  19. Wright JG, Swiontkowski MF, Heckman JD. Introducing levels of evidence to the journal. J Bone Joint Surg Am. 2003;85:1–3.

    Article  Google Scholar 

  20. Sardar Z, Alexander D, Oxner W, du Plessis S, Yee A, Wai EK, Anderson DG, Jarzem P. Twelve-month results of a multicenter, blinded, pilot study of a novel peptide (B2A) in promoting lumbar spine fusion. J Neurosurg Spine. 2015;22:358–66.

    Article  Google Scholar 

  21. vonderHoeh NH, Voelker A, Heyde CE. Results of lumbar spondylodeses using different bone grafting materials after transforaminal lumbar interbody fusion (TLIF). Eur Spine J. 2017;26:2835–42.

    Article  Google Scholar 

  22. Lee JH, Hwang CJ, Song BW, Koo KH, Chang BS, Lee CK. A prospective consecutive study of instrumented posterolateral lumbar fusion using synthetic hydroxyapatite (Bongros-HA) as a bone graft extender. J Biomed Mater Res A. 2009;90:804–10.

    Article  CAS  Google Scholar 

  23. Lee JH, Chang BS, Jeung UO, Park KW, Kim MS, Lee CK. The first clinical trial of beta-calcium pyrophosphate as a novel bone graft extender in instrumented posterolateral lumbar fusion. Clin Orthop Surg. 2011;3:238–44.

    Article  Google Scholar 

  24. Kim H, Lee CK, Yeom JS, Lee JH, Lee KH, Chang BS. The efficacy of porous hydroxyapatite bone chip as an extender of local bone graft in posterior lumbar interbody fusion. Eur Spine J. 2012;21:1324–30.

    Article  Google Scholar 

  25. Kong S, Park JH, Roh SW. A prospective comparative study of radiological outcomes after instrumented posterolateral fusion mass using autologous local bone or a mixture of beta-tcp and autologous local bone in the same patient. Acta Neurochir. 2013;155:765–70.

    Article  Google Scholar 

  26. Yoo JS, Min SH, Yoon SH. Fusion rate according to mixture ratio and volumes of bone graft in minimally invasive transforaminal lumbar interbody fusion: minimum 2-year follow-up. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S183–9. https://doi.org/10.1007/s00590-014-1529-6.

    Article  Google Scholar 

  27. Kim DH, Lee N, Shin DA, Yi S, Kim KN, Ha Y. Matched comparison of fusion rates between hydroxyapatite demineralized bone matrix and autograft in lumbar interbody fusion. J Korean Neurosurg Soc. 2016;59:363–7.

    Article  CAS  Google Scholar 

  28. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine (1976). 2012;37:1083–91.

    Article  Google Scholar 

  29. Fu TS, Wang IC, Lu ML, Hsieh MK, Chen LH, Chen WJ. The fusion rate of demineralized bone matrix compared with autogenous iliac bone graft for longmulti-segment posterolateral spinal fusion. BMC Musculoskelet Disord. 2016;17:3.

    Article  CAS  Google Scholar 

  30. Putzier M, Strube P, Funk JF, Gross C, Mönig HJ, Perka C, Pruss A. Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study. Eur Spine J. 2009;18:687–95.

    Article  Google Scholar 

  31. Frantzén J, Rantakokko J, Aro HT, Heinänen J, Kajander S, Gullichsen E, Kotilainen E, Lindfors NC. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J Spinal Disord Tech. 2011;24(7):455–61.

    Article  Google Scholar 

  32. Park JH, Roh SW. Anterior cervical interbody fusion using polyetheretherketone cage filled with autologous and synthetic bone graft substrates for cervical spondylosis: comparative analysis between PolyBone® and iliac bone. Neurol Med Chir. 2013;53:85–90.

    Article  Google Scholar 

  33. Chang WC, Tsou HK, Chen WS, Chen CC, Shen CC. Preliminary comparison of radiolucent cages containing either autogenous cancellous bone or hydroxyapatite graft in multilevel cervical fusion. J Clin Neurosci. 2009;16:793–6.

    Article  Google Scholar 

  34. Yamagata T, Naito K, Arima H, Yoshimura M, Ohata K, Takami T. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage. Neurosurg Rev. 2016;39:475–82.

    Article  Google Scholar 

  35. Yoshii T, Yuasa M, Sotome S, Yamada T, Sakaki K, Hirai T, Taniyama T, Inose H, Kato T, Arai Y, Kawabata S, Tomizawa S, Enomoto M, Shinomiya K, Okawa A. Porous/dense composite hydroxyapatite for anterior cervical discectomy and fusion. Spine (1976). 2013;38:833–40.

    Article  Google Scholar 

  36. Kim SY, Park KS, Jung SS, Chung SY, Kim SM, Park MS, Kim HK. An early comparative analysis of the use of autograft versus allograft in anterior cervical discectomy and fusion. Korean J Spine. 2012;9:142–6.

    Article  Google Scholar 

  37. Huang DG, Zhang XL, Hao DJ, Yu CC, Mi BB, Yuan QL, He BR, Liu TJ, Guo H, Wang XD. Posterior atlantoaxial fusion with a screw-rod system: allograft versus iliac crest autograft. Clin Neurol Neurosurg. 2017;162:95–100.

    Article  Google Scholar 

  38. Park JH, Bae YK, Suh SW, Yang JH, Hong JY. Efficacy of cortico/cancellous composite allograft in treatment of cervical spondylosis. Medicine. 2017;96:e7803.

    Article  Google Scholar 

  39. Arnold PM, Sasso RC, Janssen ME, Fehlings MG, Smucker JD, Vaccaro AR, Heary RF, Patel AI, Goulet B, Kalfas IH, Kopjar B. Efficacy of i-factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded food and drug administration investigational device exemption study. Spine (1976). 2016;41:1075–83.

    Article  Google Scholar 

  40. Xie Y, Li H, Yuan J, Fu L, Yang J, Zhang P. A prospective randomized comparison of PEEK cage containing calcium sulphate or demineralized bone matrix with autograft in anterior cervical interbody fusion. Int Orthop. 2015;39:1129–36.

    Article  Google Scholar 

  41. Lerner T, Bullmann V, Schulte TL, Schneider M, Liljenqvist U. A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J. 2009;18:170–9.

    Article  Google Scholar 

  42. Zhang YH, Shen L, Shao J, Chou D, Song J, Zhang J. Structural allograft versus autograft for instrumented atlantoaxial fusions in pediatric patients: radiologic and clinical outcomes in series of 32 patients. World Neurosurg. 2017;105:549–56.

    Article  Google Scholar 

  43. Ameri E, Behtash H, Mobini B, Kashani FO, Nojomi M. Bioactive glass versus autogenous iliac crest bone graft in adolescent idiopathic scoliosis surgery. Acta Med Iran. 2009;47(5):393–7.

    Google Scholar 

  44. Buser Z, Brodke DS, Youssef JA, Meisel HJ, Myhre SL, Hashimoto R, Park JB, Tim Yoon S, Wang JC. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine. 2016;25:509–16.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from Rizzoli Orthopaedic Institute (Ricerca Corrente) and by the Project ERA-NET Euronanomed III “Next generation antibacterial nanostructured osseointegrated customized vertebral replacement -NANOVERTEBRA”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Salamanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamanna, F., Tschon, M., Borsari, V. et al. Spinal fusion procedures in the adult and young population: a systematic review on allogenic bone and synthetic grafts when compared to autologous bone. J Mater Sci: Mater Med 31, 51 (2020). https://doi.org/10.1007/s10856-020-06389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06389-3

Navigation