Skip to main content
Log in

Multi-party semi-quantum secure direct communication protocol with cluster states

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new semi-quantum secure direct communication (SQSDC) protocol based on four-particle cluster states is designed. Different from the existing SQSDC protocols, this semi-quantum secure direct communication protocol includes two classical senders and one quantum receiver. The designed SQSDC protocol promises higher qubit efficiency than the previous SQSDC protocols by adopting the property of the four-particle cluster state to implement encoding operations. Moreover, the security of the proposed protocol under some common eavesdropping attacks is validated. Furthermore, the presented SQSDC protocol can be transformed into an efficient multi-party semi-quantum dialogue (SQD) protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179, Bangalore (1984)

  2. Bennett, C.H.: Quantum cryptography using any 2 nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A. 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A. 354, 67–70 (2006)

    Article  ADS  Google Scholar 

  6. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  7. Zhang, L.L., Zhan, Y.B., Zhang, Q.Y.: Controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 48, 2971–2976 (2009)

    Article  MathSciNet  Google Scholar 

  8. Xu, G., Xiao, K., Li, Z.P., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Con. 58, 809–827 (2019)

    Google Scholar 

  9. Gu, B., Huang, Y.G., Fang, X., Chen, Y.L.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56, 659–663 (2011)

    Article  ADS  Google Scholar 

  10. Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z.G., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16, 244 (2017)

    Article  ADS  Google Scholar 

  11. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: IEEE International Symposium on Information Theory (ISIT2015), pp. 686–690, Hongkong (2015)

  13. Zhang, W., Qiu, D.W., Mateus, P.: Security of a single-state semi-quantum key distribution protocol. Quantum Inf. Process. 17, 135 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  15. Zhang, M.H., Li, H.F., Xia, Z.Q., Feng, X.Y., Peng, J.Y.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16, 117 (2017)

    Article  ADS  Google Scholar 

  16. Xie, C., Li, L.Z., Situ, H.Z., He, J.H.: Semi-quantum secure direct communication scheme based on Bell states. Int. J. Theor. Phys. 57, 1881–1887 (2018)

    Article  MathSciNet  Google Scholar 

  17. Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15, 947–958 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Tao, Z., Chang, Y., Zhang, S.B., Dai, J.Q., Li, X.Y.: Two semi-quantum direct communication protocols with mutual authentication based on Bell states. Int. J. Theor. Phys. 58, 2986–2993 (2019)

    Article  Google Scholar 

  19. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sun, Y.H., Yan, L.L., Chang, Y., Zhang, S.B., Shao, T.T., Zhang, Y.: Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A. 34, 1950004 (2019)

    Article  ADS  Google Scholar 

  21. Chen, X.B., Wang, Y.L., Xu, G., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access. 7, 13634–13642 (2019)

    Article  Google Scholar 

  22. Hein, M., Dur, W., Briegel, H.J.: Entanglement properties of multipartite entangled states under the influence of decoherence. Phys. Rev. A. 71, 032350 (2005)

    Article  ADS  Google Scholar 

  23. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351, 23–25 (2006)

    Article  ADS  Google Scholar 

  24. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  25. Li, Y.B., Wang, T.Y., Chen, H.Y., Li, M.D., Yang, Y.T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52, 2818–2825 (2013)

    Article  MathSciNet  Google Scholar 

  26. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  27. Yan, L.L., Sun, Y.H., Chang, Y., Zhang, S.B., Wan, G.G., Sheng, Z.W.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 17, 315 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ye, T.Y., Ye, C.Q.: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57, 1440–1454 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033), the China Scholarship Council (Grant No. 201606825042), and the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LC., Chen, HY., Zhou, NR. et al. Multi-party semi-quantum secure direct communication protocol with cluster states. Int J Theor Phys 59, 2175–2186 (2020). https://doi.org/10.1007/s10773-020-04491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04491-4

Keywords

Navigation