Skip to main content
Log in

A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We develop a staggered finite element procedure for the coupling of a free viscous flow with a deformable porous medium, in which interface phenomena related to the skin effect can be incorporated. The basis of the developed simulation procedure is the coupled Stokes-Biot model, which is supplemented with interface conditions to mimic interface-related phenomena. Specifically, the fluid entry resistance parameter is used to relate the fluid flux through the interface to the pressure jump across the interface. The attainable jump in pressure over the interface provides an effective way of modeling sharp pressure gradients associated with the possibly reduced permeability of the interface on account of pore clogging. In addition to the fluid entry resistance parameter, the developed simulation strategy also includes the possibility of modeling fluid slip over the porous medium. Sensitivity studies are presented for both the fluid entry resistance parameter and the slip coefficient, and representative two- and three-dimensional test cases are presented to demonstrate the applicability of the developed simulation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Intel MKL PARDISO https://software.intel.com/en-us/mkl-developer-reference-fortran-intel-mkl-pardiso-parallel-direct-sparse-solver-interface

  2. Ambartsumyan, I., Ervin, V., Nguyen, T., Yotov, I.: A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media arXiv:1803.00947v2 [math.NA] (2019)

  3. Ambartsumyan, I., Khattatov, E., Yotov, I., Zunino, P.: A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 140(2), 513–553 (2018)

    Article  Google Scholar 

  4. Arbogast, T., Brunson, D.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)

    Article  Google Scholar 

  5. Auricchio, F., Beirão da Veiga, L., Brezzi, F., Lovadina, C.: Mixed finite element methods. In: Encycl. Comput. Mech. Second Ed., vol. 1: Fund., pp 1–53. John Wiley & Sons, Ltd, Chichester (2017)

  6. Babuška, I.: The finite element method with penalty. Math. Comput. 27(122), 221–228 (1973)

    Article  Google Scholar 

  7. Badia, S., Quaini, A., Quarteroni, A.: Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)

    Article  Google Scholar 

  8. Bazilevs, Y., Hughes, T.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36, 12–26 (2007)

    Article  Google Scholar 

  9. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)

    Article  Google Scholar 

  10. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  11. Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Google Scholar 

  12. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1, 27 (1949)

    Article  Google Scholar 

  13. Bukač, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292, 138–170 (2015)

    Article  Google Scholar 

  14. Bukač, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31(4), 1054–1100 (2015)

    Article  Google Scholar 

  15. Darcy, H.: Les fontaines publiques de la ville de Dijon : exposition et application des principes à suivre et des formules ȧ employer dans les questions de distribution d’eau. Tech rep (1856)

  16. Das, D., Nassehi, V., Wakeman, R.: A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions. Adv. Environ. Res. 7(1), 35–58 (2002)

    Article  Google Scholar 

  17. Dione, I., Tibirna, C., Urquiza, J.: Stokes equations with penalised slip boundary conditions. Int. J. Comut. Fluid Dyn. 27(6-7), 283–296 (2013)

    Article  Google Scholar 

  18. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1-2), 57–74 (2002)

    Article  Google Scholar 

  19. Geuzaine, C., Remacle, J. F.: Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Engng 79(11), 1309–1331 (2009)

    Article  Google Scholar 

  20. Girault, V., Wheeler, M., Ganis, B., Mear, M.: A lubrication fracture model in a poro-elastic medium. Math. Model. Methods Appl. Sci. 25(4), 587–645 (2015)

    Article  Google Scholar 

  21. Goyeau, B., Lhuillier, D., Gobin, D., Velarde, M.: Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transf. 46(21), 4071–4081 (2003)

    Article  Google Scholar 

  22. Iliev, O., Laptev, V.: On numerical simulation of flow through oil filters. Comput. Vis. Sci. 6(2-3), 139–146 (2004)

    Article  Google Scholar 

  23. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)

    Article  Google Scholar 

  24. Legarth, B., Huenges, E., Zimmermann, G.: Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int. J. Rock Mech. Min. Sci. 42(7-8), 1028–1041 (2005)

    Article  Google Scholar 

  25. Liao, C., Lin, Z., Guo, Y., Jeng, D. S.: Coupling model for waves propagating over a porous seabed. Theor. Appl. Mech. Lett. 5(2), 85–88 (2015)

    Article  Google Scholar 

  26. Liu, X., Civan, F.: Formation damage and filter cake buildup in laboratory core tests: modeling and model-assisted analysis 11(1) (1996)

  27. Murad, M., Guerreiro, J., Loula, A.: Micromechanical computational modeling of reservoir compaction and surface subsidence. Matemática Contemp. 19, 41–69 (2000)

    Google Scholar 

  28. Murad, M., Guerreiro, J., Loula, A.: Micromechanical computational modeling of secondary consolidation and hereditary creep in soils. Comput. Methods Appl. Mech. Eng. 190(15-17), 1985–2016 (2001)

    Article  Google Scholar 

  29. Remij, E., Remmers, J., Huyghe, J., Smeulders, D.: The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)

    Article  Google Scholar 

  30. Riviére, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22-23(1-3), 479–500 (2005)

    Article  Google Scholar 

  31. Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971)

    Article  Google Scholar 

  32. Showalter, R.: Poro-plastic filtration coupled to Stokes flow. In: Poromechanics III - Biot Centen., pp 523–528. Taylor & Francis Group plc, London (2005)

  33. Showalter, R.: Poroelastic filtration coupled to Stokes flow. In: Lect. notes pure Appl. Math. vol. 242: Control theory partial differ. Equations (Georget. Univ., 2003), chap. 16, pp 229–241. Chapman & Hall, Boca Raton (2005)

  34. Stoeckl, L., Walther, M., Graf, T.: A new numerical benchmark of a freshwater lens. Water Resour. Res. 52(4), 2474–2489 (2016)

    Article  Google Scholar 

  35. Terzaghi, K.: Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamische Spannungserscheinungen. Sitzber. Akad. Wiss. Wien, Abt. IIa 132, 125–138 (1923)

    Google Scholar 

  36. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer grundlage. Leipzig u. Wien, F Deuticke (1925)

  37. Valkó, P., Economides, M.: Hydraulic fracture mechanics. John Wiley & Sons, Ltd, England (1996)

    Google Scholar 

  38. Verruijt, A.: Theory and problems of poroelasticity. Delft University of Technology. Delft, The Netherlands (2016)

    Google Scholar 

  39. Wang, J., Elsworth, D.: Role of proppant distribution on the evolution of hydraulic fracture conductivity. J. Pet. Sci. Eng. 166, 249–262 (2018)

    Article  Google Scholar 

  40. Whitaker, S.: Flow in porous media I: a theorical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  41. Yi, S.: Convergence analysis of a new mixed finite element method for biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)

    Article  Google Scholar 

  42. van Zwieten, G., van Zwieten, J., Verhoosel, C., Fonn, E., Hoitinga, W.: nutils/nutils: v5.0 “farfalle”. https://doi.org/10.5281/zenodo.3243447 (2019)

Download references

Acknowledgements

All simulations in this work were performed using the open source software package Nutils [42] (www.nutils.org).

Funding

This research was sponsored by the Dutch TKI New Gas foundation, under grant number TKITOECARBFRAC2016, with financial support from EBN, Neptune Energy, and Wintershall Noordzee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bergkamp.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergkamp, E.A., Verhoosel, C.V., Remmers, J.J.C. et al. A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance. Comput Geosci 24, 1497–1522 (2020). https://doi.org/10.1007/s10596-019-09931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09931-7

Keywords

Navigation