Skip to main content

Advertisement

Log in

Microbiome characterization and re-design by biologic agents for inflammatory bowel disease insights

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The therapeutic effect of inflammatory bowel disease has improved in the past decades, but most of patients cannot tolerate, do not respond to drugs, or relapse after treating with conventional therapy. Therefore, new and more effective treatment methods are still needed in treatment of IBD. In this review, we will discuss the relevant mechanisms and the latest research progress of biologics (anti-TNF treatments, interleukin inhibitors, integrin inhibitors, antisense oligonucleotide, and JAK inhibitors) for IBD, focus on the efficacy and safety of drugs for moderate-to-severe IBD, and summarize the clinical status and future development direction of biologics in IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ng SC, Kaplan GG, Tang W, Banerjee R, Adigopula B, Underwood FE, Tanyingoh D, Wei SC, Lin WC, Lin HH, Li J, Bell S, Niewiadomski O, Kamm MA, Zeng Z, Chen M, Hu P, Ong D, Ooi CJ, Ling KL, Miao Y, Miao J, de Janaka Silva H, Niriella M, Aniwan S, Limsrivilai J, Pisespongsa P, Wu K, Yang H, Ng KK, Yu HH, Wang Y, Ouyang Q, Abdullah M, Simadibrata M, Gunawan J, Hilmi I, Lee-Goh K, Cao Q, Sheng H, Ong-Go A, Chong VH, Ching JYL, Wu JCY, Chan FKL, Sung JJY (2019) Population density and risk of inflammatory bowel disease: a prospective population-based study in 13 countries or regions in Asia-Pacific. Am J Gastroenterol 114:107–115

    PubMed  Google Scholar 

  2. Xie JH, Peters BM, Li B, Li L, Yu GC, Xu ZB, Shirtliff ME (2017) Clinical features and antimicrobial resistance profiles of important Enterobacteriaceae pathogens in Guangzhou representative of Southern China, 2001–2015. Microb Pathog 107:206–211

    CAS  PubMed  Google Scholar 

  3. Zhou MX, He J, Shen YJ, Zhang C, Wang JZ, Chen YW (2017) New frontiers in genetics, gut microbiota, and immunity: a rosetta stone for the pathogenesis of inflammatory bowel disease. Biomed Res Int. https://doi.org/10.1155/2017/8201672

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu ZB, Xie JH, Peters BM, Li B, Li L, Yu GC, Shirtliff ME (2017) Longitudinal surveillance on antibiogram of important gram-positive pathogens in southern China, 2001 to 2015. Microb Pathog 103:80–86

    CAS  PubMed  Google Scholar 

  5. Merga Y, Campbell BJ, Rhodes JM (2014) Mucosal barrier, bacteria and inflammatory bowel disease: possibilities for therapy. Dig Dis 32:475–483

    PubMed  Google Scholar 

  6. Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14:573–584

    PubMed  PubMed Central  Google Scholar 

  7. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    PubMed  PubMed Central  Google Scholar 

  8. Bao XR, Yang L, Chen LQ, Li B, Li L, Li YY, Xu ZB (2017) Analysis on pathogenic and virulent characteristics of the Cronobacter sakazakii strain BAA-894 by whole genome sequencing and its demonstration in basic biology science. Microb Pathog 109:280–286

    CAS  PubMed  Google Scholar 

  9. Halfvarson J, Brislawn CJ, Lamendella R, Vazquez-Baeza Y, Walters WA, Bramer LM, D'Amato M, Bonfiglio F, McDonald D, Gonzalez A, McClure EE, Dunklebarger MF, Knight R, Jansson JK (2017) Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2:17004

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhenbo Xu, Li L, Shirliff ME, Peters BM, Peng Yi, Alam MJ, Yamasaki S, Shi* L (2010) First report of class 2 integron in clinical Enterococcus faecalis and class 1 integron in Enterococcus faecium in South China. Diagn Microbiol Infect Dis 68:315–317. https://doi.org/10.1016/j.diagmicrobio.2010.05.014

    Article  CAS  Google Scholar 

  11. Zhenbo Xu, Li L, Shirliff ME, Alam MJ, Yamasaki S, Shi* L (2009) Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in Southern China. J Clin Microbiol 47:230–234. https://doi.org/10.1128/JCM.02027-08

    Article  CAS  Google Scholar 

  12. Zhou Y, Zhi F (2016) Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Biomed Res Int 2016:5828959

    PubMed  PubMed Central  Google Scholar 

  13. Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, Zhu W, Sartor RB, Boedeker EC, Harpaz N, Pace NR, Li E (2011) Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 17:179–184

    PubMed  Google Scholar 

  14. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450

    CAS  PubMed  Google Scholar 

  15. Xu* Z, Xie J, Liu J, Ji L, Soteyome T, Peters BM, Chen D, Li B, Li L, Shirtliff ME (2017) Whole-genome resequencing of Bacillus cereus and expression of genes functioning in sodium chloride stress. Microb Pathog 104:248–253. https://doi.org/10.1016/j.micpath.2017.01.040

    Article  CAS  PubMed  Google Scholar 

  16. Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF (2018) Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67:574–587

    CAS  PubMed  Google Scholar 

  17. Xu* Z, Xie J, Soteyome T, Peters BM, Shirtliff ME, Liu** J, Harro JM (2019) Polymicrobial interaction and biofilms between Staphylococcus aureus and Pseudomonas aeruginosa: an underestimated concern in food safety. Curr Opinion Food Sci 26:57–64. https://doi.org/10.1016/j.cofs.2019.03.006

    Article  Google Scholar 

  18. Dunne KA, Allam A, McIntosh A, Houston SA, Cerovic V, Goodyear CS, Roe AJ, Beatson SA, Milling SW, Walker D, Wall DM (2013) Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive Escherichia coli (AIEC) in immune cells. PLoS ONE 8:e68386

    CAS  PubMed  PubMed Central  Google Scholar 

  19. McNees AL, Markesich D, Zayyani NR, Graham DY (2015) Mycobacterium paratuberculosis as a cause of Crohn's disease. Expert Rev Gastroenterol Hepatol 9:1523–1534

    PubMed  PubMed Central  Google Scholar 

  20. Yu G, Wen W, Peters BM, Liu J, Ye C, Che Y, Liu J, Cao* K, Xu* Z, Shirtliff ME (2016) First report of novel genetic array aacA4-bla(IMP-25)-oxa30-catB3 and identification of novel metallo-beta-lactamase gene bla(IMP25): a retrospective study of antibiotic resistance surveillance on Psuedomonas aeruginosa in Guangzhou of South China, 2003-2007. Microb Pathog 95:62–67. https://doi.org/10.1016/j.micpath.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  21. Nitzan O, Elias M, Peretz A, Saliba W (2016) Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol 22:1078–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng Y, Liu J, Peters BM, Chen L, Miao J, Li B, Li L, Chen D, Guangchao Y, Xu* Z, Shirtliff ME (2015) Antimicrobial resistance investigation on Staphylococcus strains in a local Hospital in Guangzhou, China, 2001–2010. Microb Drug Resist 21:102–104. https://doi.org/10.1089/mdr.2014.0117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Issa M, Vijayapal A, Graham MB, Beaulieu DB, Otterson MF, Lundeen S, Skaros S, Weber LR, Komorowski RA, Knox JF, Emmons J, Bajaj JS, Binion DG (2007) Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 5:345–351

    PubMed  Google Scholar 

  24. Ledder O, Turner D (2018) Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis 24:1676–1688

    PubMed  Google Scholar 

  25. Xu Z, Li L, Shirliff ME, Peters BM, Li B, Peng Y, Alam MJ, Yamasaki S, Shi* L (2011) Resistance class 1 integron in clinical methicillin-resistant Staphylococcus aureus strains in southern China, 2001–2006. Clin Microbiol Infect 17:714–718. https://doi.org/10.1111/j.1469-0691.2010.03379.x

    Article  CAS  PubMed  Google Scholar 

  26. Atreya R, Zimmer M, Bartsch B, Waldner MJ, Atreya I, Neumann H, Hildner K, Hoffman A, Kiesslich R, Rink AD, Rau TT, Rose-John S, Kessler H, Schmidt J, Neurath MF (2011) Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14+ macrophages. Gastroenterology 141:2026–2038

    CAS  PubMed  Google Scholar 

  27. Lichtenstein GR, Feagan BG, Cohen RD, Salzberg BA, Safdi M, Popp JW Jr, Langholff W, Sandborn WJ (2018) Infliximab for Crohn's disease: more than 13 Years of real-world experience. Inflamm Bowel Dis 24:490–501

    PubMed  PubMed Central  Google Scholar 

  28. Xu Z, Shi* L, Zhang C, Zhang L, Li X, Cao Y, Li L, Yamasaki S (2007) Nosocomial infection caused by class 1 integron-carrying Staphylococcus aureus in a hospital in South China. Clin Microbiol Infect 13:980–984. https://doi.org/10.1111/j.1469-0691.2007.01782.x

    Article  CAS  PubMed  Google Scholar 

  29. Bakouny Z, Yared F, El Rassy E, Jabbour R, Hallit R, Khoury N, Honein K, Bou Jaoude J (2019) Comparative efficacy of anti-TNF therapies for the prevention of postoperative recurrence of Crohn's disease: a systematic review and network meta-analysis of prospective trials. J Clin Gastroenterol 53:409–417

    CAS  PubMed  Google Scholar 

  30. Xu Z, Shi* L, Alam MJ, Li L, Yamasaki S (2008) Integron-bearing methicillin-resistant coagulase-negative staphylococci in South China, 2001–2004. FEMS Microbiol Lett 278:223–230. https://doi.org/10.1111/j.1574-6968.2007.00994.x

    Article  CAS  PubMed  Google Scholar 

  31. Reinisch W, Sandborn WJ, Hommes DW, D’ Haens G, Hanauer S, Schreiber S, Panaccione R, Fedorak RN, Tighe MB, Huang B, Kampman W, Lazar A, Thakkar R (2011) Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut 60:780–787

    CAS  PubMed  Google Scholar 

  32. Sandborn WJ, van Assche G, Reinisch W, Colombel JF, D’ Haens G, Wolf DC, Kron M, Tighe MB, Lazar A, Thakkar RB (2012) Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 142:257–265

    CAS  PubMed  Google Scholar 

  33. Xu Z, Li L, Alam MJ, Zhang L, Yamasaki S, Shi* L (2008) First confirmation of integron-bearing methicillin-resistant Staphylococcus aureus. Curr Microbiol 57:264–268. https://doi.org/10.1007/s00284-008-9187-8

    Article  CAS  PubMed  Google Scholar 

  34. Ungar B, Levy I, Yavne Y, Yavzori M, Picard O, Fudim E, Loebstein R, Chowers Y, Eliakim R, Kopylov U, Ben-Horin S (2016) Optimizing anti-TNF-alpha therapy: serum levels of infliximab and adalimumab are associated with mucosal healing in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol 14(550–557):e2

    Google Scholar 

  35. Gonczi L, Kurti Z, Rutka M, Vegh Z, Farkas K, Lovasz BD, Golovics PA, Gecse KB, Szalay B, Molnar T (2017) Lakatos PLDrug persistence and need for dose intensification to adalimumab therapy; the importance of therapeutic drug monitoring in inflammatory bowel diseases. BMC Gastroenterol 17:97

    PubMed  PubMed Central  Google Scholar 

  36. Liu J, Li L, Li B, Peters BM, Deng* Y, Xu* Z, Shirtliff ME (2017) The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium. Microbiol Open. https://doi.org/10.1002/mbo3.506

    Article  Google Scholar 

  37. Probert CS, Sebastian S, Gaya DR, Hamlin PJ, Gillespie G, Rose A, Tate H, Wheeler C, Irving PM (2018) Golimumab induction and maintenance for moderate to severe ulcerative colitis: results from GO-COLITIS (Golimumab: a Phase 4, UK, open label, single arm study on its utilization and impact in ulcerative Colitis). BMJ Open Gastroenterol 5:e000212

    PubMed  PubMed Central  Google Scholar 

  38. Martineau C, Flourié B, Wils P, Vaysse T, Altwegg R, Buisson A, Amiot A, de Pineton CG, Abitbol V, Fumery M, Hébuterne X, Viennot S, Laharie D, Beaugerie L, Nancey S, Sokol H, Goli-Crohn Study Group (2017) Efficacy and safety of golimumab in Crohn's disease: a French national retrospective study. Aliment Pharmacol Ther 46:1077–1084

    CAS  PubMed  Google Scholar 

  39. Bao X, Yang L, Chen L, Li B, Li L, Li** Y, Xu* Z (2017) Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb Pathog 110:359–364. https://doi.org/10.1016/j.micpath.2017.07.022

    Article  CAS  PubMed  Google Scholar 

  40. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278:1910–1914

    CAS  PubMed  Google Scholar 

  41. Mirsattari D, Seyyedmajidi M, Zojaji H, Haghazali M, Orimi PG, Shoushtarizadeh T, Almasi S (2012) The relation between the level of interleukin-23 with duration and severity of ulcerative colitis. Gastroenterol Hepatol Bed Bench 5:49–53

    PubMed  PubMed Central  Google Scholar 

  42. Wang L, Li Y, Chu J, Xu* Z, Zhong Q (2012) Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol Biol Rep 39:445–449. https://doi.org/10.1007/s11033-011-0757-7

    Article  CAS  PubMed  Google Scholar 

  43. Sands BE, Sandborn WJ, Panaccione R, O’ Brien CD, Zhang H, Johanns J, Adedokun OJ, Li K, Peyrin-Biroulet L, Van Assche G, Danese S, Targan S, Abreu MT, Hisamatsu T, Szapary P, Marano C, UNIFI Study Group (2019) Ustekinumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med 381:1201–1214

    CAS  PubMed  Google Scholar 

  44. Iborra M, Beltrán B, Fernández-Clotet A, Gutiérrez A, Antolín B, Huguet JM, De Francisco R, Merino O, Carpio D, García-López S, Mesonero F, Navarro P, Ferreiro-Iglesias R, Carbajo AY, Rivero M, Gisbert JP, Piñero-Pérez MC, Monfort D, Bujanda L, García-Sepulcre MF, Martín-Cardona A, Cañete F, Taxonera C, Domènech E, Nos P, GETECCU Group (Grupo Español de Trabajo en Enfermedad de Crohn y Colitis Ulcerosa) (2019) Real-world short-term effectiveness of ustekinumab in 305 patients with Crohn's disease: results from the ENEIDA registry. Aliment Pharmacol Ther 50:278–288

    CAS  PubMed  Google Scholar 

  45. Miao J, Chen L, Wang J, Wang W, Chen** D, Li L, Li B, Deng Y, Xu* Z (2017) Evaluation and application of molecular genotyping on nosocomial pathogen-methicillin-resistant Staphylococcus aureus isolates in Guangzhou representative of Southern China. Microb Pathog 107:397–403. https://doi.org/10.1016/j.micpath.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  46. Madarame A.; Kimura H.; Kunisaki R (2019) Successful Treatment With Ustekinumab for Enterocutaneous Fistulas in Crohn's Disease. J Crohns Colitis

  47. Zhao X, Li Y, Chu J, Wang L, Shirtliff ME, He X, Liu Y, Wang J, Xu* Z, Li L (2010) Rapid detection of Vibrio parahaemolyticus strains and virulent factors by loop-mediated isothermal amplification assays. Food Sci Biotechnol 19:1191–1197. https://doi.org/10.1007/s10068-010-0170-3

    Article  Google Scholar 

  48. Granlund Av, Flatberg A, Østvik AE, Drozdov I, Gustafsson BI, Kidd M, Beisvag V, Torp SH, Waldum HL, Martinsen TC, Damås JK, Espevik T, Sandvik AK (2013) Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis. PLoS ONE 8:e56818

    PubMed  PubMed Central  Google Scholar 

  49. Feagan BG, Sandborn WJ, D’ Haens G, Panés J, Kaser A, Ferrante M, Louis E, Franchimont D, Dewit O, Seidler U, Kim KJ, Neurath MF, Schreiber S, Scholl P, Pamulapati C, Lalovic B, Visvanathan S, Padula SJ, Herichova I, Soaita A, Hall DB, Böcher WO (2017) Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389:1699–1709

    CAS  PubMed  Google Scholar 

  50. Zhao X, Wang L, Chu J, Li Y, Li Y, Xu* Z, Li L, Shirtliff ME, He X, Liu Y, Wang J, Yang L (2009) Development and application of a rapid and simple loop-mediated isothermal amplification method for food-borne Salmonella detection. Food Sci Biotechnol 19:1655–1659. https://doi.org/10.1007/s10068-010-0234-4

    Article  Google Scholar 

  51. Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C (1997) Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 112:1895–1907

    CAS  PubMed  Google Scholar 

  52. Zundler S, Becker E, Weidinger C, Siegmund B (2017) Anti-adhesion therapies in inflammatory bowel disease-molecular and clinical aspects. Front Immunol 8:891

    PubMed  PubMed Central  Google Scholar 

  53. Zhao X, Li Y, Wang L, You L, Xu* Z, Li L, He* X, Liu Y, Wang J, Yang L (2010) Development and application of a loop-mediated isothermal amplification method on rapid detection Escherichia coli O157 strains from food samples. Mol Biol Rep 37:2183–2188. https://doi.org/10.1007/s11033-009-9700-6

    Article  CAS  PubMed  Google Scholar 

  54. Yun L, Hanauer S (2009) Selecting appropriate anti-TNF agents in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 3:235–248

    CAS  PubMed  Google Scholar 

  55. Nelson SM, Nguyen TM, McDonald JW, MacDonald JK (2018) Natalizumab for induction of remission in Crohn's disease. Cochrane database Syst Rev 8:CD006097

    PubMed  Google Scholar 

  56. Xu Z, Li L, Chu J, Peters BM, Harris ML, Li B, Shi L, Shirliff* ME (2012) Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res Int 47:166–173. https://doi.org/10.1016/j.foodres.2011.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fiorino G, Correale C, Fries W, Repici A, Malesci A, Danese S (2010) Leukocyte traffic control: a novel therapeutic strategy for inflammatory bowel disease. Expert Rev Clin Immunol 6:567–572

    CAS  PubMed  Google Scholar 

  58. Liu J, Li L, Li B, Peters BM, Deng* Y, Xu* Z, Shirtliff ME (2017) Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb Pathog 110:257–261. https://doi.org/10.1016/j.micpath.2017.06.044

    Article  CAS  PubMed  Google Scholar 

  59. Amiot A, Serrero M, Peyrin-Biroulet L, Filippi J, Pariente B, Roblin X, Buisson A, Stefanescu C, Trang-Poisson C, Altwegg R, Marteau P, Vaysse T, Bourrier A, Nancey S, Laharie D, Allez M, Savoye G, Moreau J, Vuitton L, Viennot S, Aubourg A, Pelletier AL, Bouguen G, Abitbol V, Gagniere C, Bouhnik Y, OBSERV-IBD study group, and the GETAID (2017) One-year effectiveness and safety of vedolizumab therapy for inflammatory bowel disease: a prospective multicentre cohort study. Aliment Pharmacol Ther 46:310–321

    CAS  PubMed  Google Scholar 

  60. Xu Z, Li L, Shi* L, Shirliff ME (2011) Class 1 integron in staphylococci. Mol Biol Rep 38:5261–5279. https://doi.org/10.1007/s11033-011-0676-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Löwenberg M, Vermeire S, Mostafavi N, Hoentjen F, Franchimont D, Bossuyt P, Hindryckx P, Rispens T, de Vries A, van der Woude CJ, Berends S, Ambarus CA, Mathot R, Clasquin E, Baert F, D’ Haens G (2019) Vedolizumab Induces Endoscopic and Histologic Remission in Patients With Crohn's Disease. Gastroenterology

  62. Xie J, Yang L, Peters BM, Chen L, Chen D, Li B, Li L, Yu** G, Xu* Z, Shirtliff ME (2017) A 16-year retrospective surveillance report on the pathogenic features and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from Guangzhou representative of Southern China. Microb Pathog 110:37–41. https://doi.org/10.1016/j.micpath.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  63. Liu J, Deng Y, Peters BM, Li L, Li B, Chen L, Xu* Z, Shirtliff ME (2016) Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans. Sci Rep 6:36753. https://doi.org/10.1038/srep36753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tursi A, Mocci G, Faggiani R, Allegretta L, Valle ND, Medici A, Forti G, Franceschi M, Ferronato A, Gallina S, Grasso G, Larussa T, Luzza F, Lorenzetti R, Penna A, Rodino' S, Sebkova L, Lauria A, Piergallini S, Pranzo G, Scorza S, Zampaletta C, Picchio M, Elisei W (2019) Vedolizumab is effective and safe in real-life treatment of inflammatory bowel diseases outpatients: a multicenter, observational study in primary inflammatory bowel disease centers. Eur J Intern Med 66:85–91

    CAS  PubMed  Google Scholar 

  65. Liu J, Chen D, Peters BM, Li L, Li B, Xu* Z, Shirliff ME (2016) Staphylococcal chromosomal cassettes mec (SCCmec): a mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 101:56–67. https://doi.org/10.1016/j.micpath.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  66. Gebhard C, Huard G, Kritikou EA, Tardif JC (2013) Apolipoprotein B antisense inhibition–update on mipomersen. Curr Pharm Des 19:3132–3142

    CAS  PubMed  Google Scholar 

  67. Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S, Aoki Y (2016) Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 8:2471–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Miao J, Chen L, Wang J, Wang W, Chen D, Li L, Li B, Deng** Y, Xu* Z (2017) Current methodologies on genotyping for nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog 107:17–28. https://doi.org/10.1016/j.micpath.2017.03.010 (Impact Factor: 2.332)

    Article  CAS  PubMed  Google Scholar 

  69. Yacyshyn B, Chey WY, Wedel MK, Yu RZ, Paul D, Chuang E (2007) A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn's disease. Clin Gastroenterol Hepatol 5:215–220

    CAS  PubMed  Google Scholar 

  70. Yacyshyn BR, Chey WY, Goff J, Salzberg B, Baerg R, Buchman AL, Tami J, Yu R, Gibiansky E, Shanahan WR, ISIS 2302-CS9 Investigators (2002) Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn's disease. Gut 51:30–36

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng Y, Liu J, Li L, Fang H, Tu J, Li B, Liu J, Li* H, Xu* Z (2015) Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011–8. Int J Food Microbiol 20:96–101. https://doi.org/10.1016/j.ijfoodmicro.2015.04.046

    Article  CAS  Google Scholar 

  72. Greuter T, Biedermann L, Rogler G, Sauter B, Seibold F (2016) Alicaforsen, an antisense inhibitor of ICAM-1, as treatment for chronic refractory pouchitis after proctocolectomy: a case series. United European Gastroenterol J 4:97–104

    CAS  PubMed  Google Scholar 

  73. Greuter T, Rogler G (2017) Alicaforsen in the treatment of pouchitis. Immunotherapy 9:1143–1152

    CAS  PubMed  Google Scholar 

  74. Reinisch W, Hung K, Hassan-Zahraee M, Cataldi F (2018) Targeting endothelial ligands: ICAM-1/alicaforsen, MAdCAM-1. J Crohns Colitis 12:S669–S677

    PubMed  Google Scholar 

  75. Xu* Z, Liang Y, Lin S, Chen* D, Li B, Li L, Deng Y (2016) Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr Microbiol 73:474–482. https://doi.org/10.1007/s00284-016-1081-1

    Article  CAS  PubMed  Google Scholar 

  76. Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, Scribano ML, Armuzzi A, Caprioli F, Sturniolo GC, Rogai F, Vecchi M, Atreya R, Bossa F, Onali S, Fichera M, Corazza GR, Biancone L, Savarino V, Pica R, Orlando A, Pallone F (2015) Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease. New Eng J Med 372:1104–1113

    CAS  PubMed  Google Scholar 

  77. Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, Calabrese E, Viti F, Monteleone I, Biancone L, Pallone F (2012) Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn's disease. Mol Ther 20:870–876

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao X, Li W, Yanmei L, Xu* Z, Li L, He X, Liu Y, Wang J, Yang L (2011) Development and application of a loop-mediated isothermal amplification method on rapid detection of Pseudomonas aeruginosa strains. World J Microbiol Biotechnol 27:181–184. https://doi.org/10.1007/s11274-010-0429-0

    Article  CAS  Google Scholar 

  79. Atreya R, Bloom S, Scaldaferri F, Gerardi V, Admyre C, Karlsson Å, Knittel T, Kowalski J, Lukas M, Löfberg R, Nancey S, Petryka R, Rydzewska G, Schnabel R, Seidler U, Neurath MF, Hawkey C (2016) Clinical effects of a topically applied toll-like receptor 9 agonist in active moderate-to-severe ulcerative colitis. J Crohns Colitis 10:1294–1302

    PubMed  PubMed Central  Google Scholar 

  80. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    CAS  PubMed  Google Scholar 

  81. Miao J, Liang Y, Chen L, Wang W, Wang J, Li B, Li L, Chen* D, Xu* Z (2017) Formation and development of Staphylococcus biofilm: with focus on food safety. J Food Safety 7:e12358. https://doi.org/10.1111/jfs.12358

    Article  Google Scholar 

  82. Pierdomenico M, Palone F, Cesi V, Vitali R, Mancuso AB, Cucchiara S, Oliva S, Aloi M, Stronati L (2018) Transcription factor ZNF281: a novel player in intestinal inflammation and fibrosis. Front Immunol 9:2907

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu J, Li L, Li B, Peters BM, Xu* Z, Shirtliff ME (2017) First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Microb Pathog 107:219–224. https://doi.org/10.1016/j.micpath.2017.03.043

    Article  PubMed  Google Scholar 

  84. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    CAS  PubMed  Google Scholar 

  85. Choy EH (2019) Clinical significance of Janus Kinase inhibitor selectivity. Rheumatology (Oxford) 58:953–962

    CAS  Google Scholar 

  86. Bao X, Jia X, Chen L, Peters BM, Lin C-W, Chen DQ, Li L, Li B, Li** Y, Xu* Z, Shirtliff M (2017) Effect of polymyxin resistance (pmr) on biofilm formation of cronobacter sakazakii. Microb Pathog 106:16–19

    CAS  PubMed  Google Scholar 

  87. Hofmann SR, Ettinger R, Zhou YJ, Gadina M, Lipsky P, Siegel R, Candotti F, O’ Shea JJ (2002) Cytokines and their role in lymphoid development, differentiation and homeostasis. Curr Opin Allergy Clin Immunol 2:495–506

    PubMed  Google Scholar 

  88. Liu J, Li L, Peters BM, Li B, Chen** D, Xu* Z, Shirtliff ME (2017) Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426. Microb Pathog 108:55–60. https://doi.org/10.1016/j.micpath.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  89. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, Niezychowski W, Study A3921063 Investigators (2012) Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 367:616–624

    CAS  PubMed  Google Scholar 

  90. Sandborn WJ, Su C, Sands BE, D’ Haens GR, Vermeire S, Schreiber S, Danese S, Feagan BG, Reinisch W, Niezychowski W, Friedman G, Lawendy N, Yu D, Woodworth D, Mukherjee A, Zhang H, Healey P, Panés J (2017) OCTAVE induction 1, OCTAVE induction 2, and OCTAVE sustain investigators. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med 376:1723–1736

    CAS  PubMed  Google Scholar 

  91. Liu J, Zhou R, Peters BM, Li B, Lin C-W, Chuang T-L, Chen D, Zhao X, Xiong** Z, Xu* Z, Shirtliff ME (2016) Viable but Non-Culturable State and Toxin Gene Expression of enterohemorrhagic Escherichia coli O157 Under Cryopreservation. Res Microbiol 101:56–67. https://doi.org/10.1016/j.micpath.2016.10.028

    Article  CAS  Google Scholar 

  92. Sandborn WJ, Panés J, Sands BE, Reinisch W, Su C, Lawendy N, Koram N, Fan H, Jones TV, Modesto I, Quirk D, Danese S (2019) Venous thromboembolic events in the tofacitinib ulcerative colitis clinical development programme. Aliment Pharmacol Ther 50:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bonovas S, Lytras T, Nikolopoulos G, Peyrin-Biroulet L, Danese S (2018) Systematic review with network meta-analysis: comparative assessment of tofacitinib and biological therapies for moderate-to-severe ulcerative colitis. Aliment Pharmacol Ther 47:454–465

    CAS  PubMed  Google Scholar 

  94. Liu J, Li L, Zhou** L, Li B, Xu* Z (2017) Effect of ultrasound treatment conditions on Saccharomyces cerecisiae by response surface methodology. Microb Pathog 111:497–502. https://doi.org/10.1016/j.micpath.2017.09.017

    Article  PubMed  Google Scholar 

  95. Gonczi L, Kurti Z, Rutka M, Vegh Z, Farkas K, Lovasz BD, Golovics PA, Gecse KB, Szalay B, Molnar T, Lakatos PL (2017) Drug persistence and need for dose intensification to adalimumab therapy; the importance of therapeutic drug monitoring in inflammatory bowel diseases. BMC Gastroenterol 17:97

    PubMed  PubMed Central  Google Scholar 

  96. Sands BE, Peyrin-Biroulet L, Loftus EV Jr, Danese S, Colombel JF, Törüner M, Jonaitis L, Abhyankar B, Chen J, Rogers R, Lirio RA, Bornstein JD, Schreiber S, VARSITY Study Group (2019) Vedolizumab versus Adalimumab for Moderate-to-Severe Ulcerative Colitis. N Engl J Med 381:1215–1226

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was funded by Natural Science Foundation of Guangdong Province (2017A030313488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijin Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chen, H., Fu, S. et al. Microbiome characterization and re-design by biologic agents for inflammatory bowel disease insights. Bioprocess Biosyst Eng 44, 929–939 (2021). https://doi.org/10.1007/s00449-020-02380-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02380-y

Keywords

Navigation