Skip to main content

Advertisement

Log in

Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Two greenhouse experiments using soils from long-term field plots were carried out to test whether and how soil factors modulated by organic amendments feed back to rice plant growth and defense against an aboveground herbivore, the planthopper Nilaparvata lugens. Using factorial combinations of sterilized soil and soil inocula obtained from chemically amended plots (i.e., control treatment) or chemically plus organically amended plots (i.e., organic treatment), we disentangled the effects of biotic and abiotic soil properties on plant and planthopper performance. We found that, compared with abiotic soil properties, soil biological factors were the main drivers in regulating plant growth performance. Specifically, soil biota that are shaped by the organic treatment had high microbial abundance and diversity and enhanced rice plant tolerance (i.e., increasing plant total biomass) and resistance (i.e., decreasing amino acid and sugar concentrations) to planthoppers. Moreover, the organic treatment simultaneously increased plant growth and defense against planthoppers, which could be explained by high soil nutrient availability driven by soil biota. Our results demonstrate the importance of synergistic effects of soil biota and soil abiotic factors on plant growth and resistance to herbivory. These findings are important for better understanding the mechanisms and impacts of ecological intensification as well as the potential of steering soil communities to reduce the use of chemical fertilizers and pesticides and further optimize crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agegnehu G, Nelson PN, Bird MI (2016) Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res 160:1–13

    Google Scholar 

  • Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic and other oxidation substrates in plant tissues using folin-ciocalteu reagent. Nat Protoc 2:875–877

    PubMed  CAS  Google Scholar 

  • Almasia R, Carú M, Handford M, Orlando J (2016) Environmental conditions shape soil bacterial community structure in a fragmented landscape. Soil Biol Biochem 103:39–45

    CAS  Google Scholar 

  • Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211

    Google Scholar 

  • Alyokhin A, Porter G, Groden E, Drummond F (2005) Colorado potato beetle response to soil amendments: a case in support of the mineral balance hypothesis? Agric Ecosyst Environ 109:234–244

    Google Scholar 

  • Archer E (2016) Estimate permutation p-values for importance metrics. R Package Version 2.0

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    PubMed  CAS  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273

    PubMed  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    PubMed  CAS  Google Scholar 

  • Bechtold U, Ferguson JN, Mullineaux PM (2018) To defend or to grow: lessons from arabidopsis C24. J Exp Bot 69:2809–2821

    PubMed  CAS  Google Scholar 

  • Bedada W, Karltun E, Lemenih M, Tolera M (2014) Long-term addition of compost and NP fertilizer increases crop yield and improves soil quality in experiments on smallholder farms. Agric Ecosyst Environ 195:193–201

    Google Scholar 

  • Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    PubMed  Google Scholar 

  • Berenbaum MR (1995) Turnabout is fair play: secondary roles for primary compounds. J Chem Ecol 21:925–940

    PubMed  CAS  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    PubMed  Google Scholar 

  • Bottrell DG, Schoenly KG (2012) Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J Asia Pac Entomol 15:122–140

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Cahill JF, Cale JA, Karst J, Bao T, Pec GJ, Erbilgin N (2017) No silver bullet: different soil handling techniques are useful for different research questions, exhibit differential type i and ii error rates, and are sensitive to sampling intensity. New Phytol 216:11–14

    PubMed  Google Scholar 

  • Chaboussou F (2004) Healthy crops: a new agricultural revolution. Jon Carpenter Publishing, Oxford

    Google Scholar 

  • Chen J, Chen D, Xu Q, Fuhrmann JJ, Li L, Pan G, Li Y, Qin H, Liang C, Sun X (2019) Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol Fertil Soils 55:185–197

    CAS  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    PubMed  CAS  Google Scholar 

  • D'Costa L, Simmonds MSJ, Straw N, Castagneyrol B, Koricheva J (2014) Leaf traits influencing oviposition preference and larval performance of Cameraria ohridella on native and novel host plants. Entomol Exp Appl 152:157–164

    Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Covelo F, Prado-Comesaña A, Ochoa V, Maestre FT (2015) Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–1098

    Google Scholar 

  • Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, Singh BK (2017) Microbial richness and composition independently drive soil multifunctionality. Funct Ecol 31:2330–2343

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Mennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    PubMed  CAS  Google Scholar 

  • Fortmann-Roe S (2013) Accurate, adaptable, and accessible error metrics for predictive. R package version 0.9:2

  • Friesen ML, Porter SS, Stark SC, Von Wettberg EJ, Sachs JL, Martinez-Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46

    Google Scholar 

  • Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, Treseder KK, Allison SD, Martiny JBH (2018) Decomposition responses to climate depend on microbial community composition. PNAS 115:11994–11999

    PubMed  CAS  Google Scholar 

  • Gong X, Wang S, Wang Z, Jiang Y, Hu Z, Zheng Y, Chen X, Li H, Hu F, Liu M, Scheu S (2019) Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma 347:59–69

    CAS  Google Scholar 

  • Gravuer K, Gennet S, Throop HL (2019) Organic amendment additions to rangelands: a meta-analysis of multiple ecosystem outcomes. Glob Chang Biol 25:1152–1170

    PubMed  PubMed Central  Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sørensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722

    CAS  Google Scholar 

  • Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, Askew AP, Corker D, Kielty JP (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765

    PubMed  CAS  Google Scholar 

  • Gundale MJ, Wardle DA, Kardol P, van der Putten WH, Lucas RW (2017) Soil handling methods should be selected based on research questions and goals. New Phytol 216:18–23

    PubMed  Google Scholar 

  • Heinen R, Biere A, Harvey JA, Bezemer TM (2018) Effects of soil organisms on aboveground plant-insect interactions in the field: patterns, mechanisms and the role of methodology. Front Ecol Evol 6:106

    Google Scholar 

  • Heinen R, Biere A, Bezemer TM (2020) Plant traits shape soil legacy effects on individual plant-insect interactions. Oikos 129:261–273

    CAS  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect manduca sexta, but is not required for the resistance to the generalist Spodoptera Littoralis. New Phytol 199:787–799

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000a) Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol 88:150–164

    Google Scholar 

  • Hodge A, Robinson D, Fitter A (2000b) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    PubMed  CAS  Google Scholar 

  • Hu Y, Xiang D, Veresoglou SD, Chen F, Chen Y, Hao Z, Zhang X, Chen B (2014) Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biol Biochem 77:51–57

    CAS  Google Scholar 

  • Huang Q, Hu F, Huang S, Li H, Yuan Y, Pan G, Zhang W (2009) Effect of long-term fertilization on organic carbon and nitrogen in a subtropical paddy soil. Pedosphere 19:727–734

    CAS  Google Scholar 

  • Huang W, Siemann E, Wheeler GS, Zou J, Carrillo J, Ding J (2010) Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant. J Ecol 98:1157–1167

    Google Scholar 

  • Huang J, Liu M, Chen F, Griffiths BS, Chen X, Johnson SN, Hu F (2012) Crop resistance traits modify the effects of an aboveground herbivore, brown planthopper, on soil microbial biomass and nematode community via changes to plant performance. Soil Biol Biochem 49:157–166

    CAS  Google Scholar 

  • Huang J, Liu M, Chen X, Chen J, Chen F, Li H, Hu F (2013) Intermediate herbivory intensity of an aboveground pest promotes soil labile resources and microbial biomass via modifying rice growth. Plant Soil 367:437–447

    CAS  Google Scholar 

  • Huot B, Yao J, Montgomery BL, He SY (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7:1267–1287

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ialongo C (2016) Understanding the effect size and its measures. Biochem Med 26:150–163

    Google Scholar 

  • Ikoyi I, Egeter B, Chaves C, Ahmed M, Fowler A, Schmalenberger A (2020) Responses of soil microbiota and nematodes to application of organic and inorganic fertilizers in grassland columns. Biol Fertil Soils. https://doi.org/10.1007/s00374-020-01440-5

  • IUSS Working Group WRB (2006) World reference base for soil resources. World Soil Resources Report 103. FAO Rome, Italy

  • Ji L, Ni K, Wu Z, Zhang J, Yi X, Yang X, Ling N, You Z, Guo S, Ruan J (2020) Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization. Biol Fertil Soils. https://doi.org/10.1007/s00374-020-01439-y

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Knapp S, van der Heijden MGA (2018) A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun 9:3632

    PubMed  PubMed Central  Google Scholar 

  • Kula AAR, Hartnett DC, Wilson GWT (2005) Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions. Ecol Lett 8:61–69

    Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. PNAS 109:14058–14062

    PubMed  CAS  Google Scholar 

  • Lehtonen P, Helander M, Saikkonen K (2005) Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45

    PubMed  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Liu M, Hu F, Chen X, Huang Q, Jiao J, Zhang B, Li H (2009) Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Appl Soil Ecol 42:166–175

    Google Scholar 

  • Liu T, Yang L, Hu Z, Xue J, Lu Y, Chen X, Griffiths BS, Whalen JK, Liu M (2020) Biochar exerts negative effects on soil fauna across multiple trophic levels in a cultivated acidic soil. Biol Fertil Soils. https://doi.org/10.1007/s00374-020-01436-1

  • Lozupone C, Hamady M, Knight R (2006) UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371

    PubMed  PubMed Central  Google Scholar 

  • Luo G, Li L, Friman V, Guo J, Guo S, Shen Q, Ling N (2018) Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biol Biochem 124:105–115

    CAS  Google Scholar 

  • Ma C, Liu M, Wang H, Chen C, Fan W, Griffiths BS, Li H (2015) Resource utilization capability of bacteria predicts their invasion potential in soil. Soil Biol Biochem 81:287–290

    CAS  Google Scholar 

  • Ma H, Pineda A, Hannula SE, Kielak AM, Setyarini SN, Bezemer TM (2020) Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl Soil Ecol 150:103468

    Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    PubMed  Google Scholar 

  • Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GF, van der Heijden MGA, Kardol P (2018) Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    PubMed  Google Scholar 

  • Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822

    PubMed  CAS  Google Scholar 

  • Masuko T, Minami A, Iwasaki N, Majima T, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72

    PubMed  CAS  Google Scholar 

  • Muller A, Schader C, Scialabba NEH, Brüggemann J, Isensee A, Erb KH, Smith P, Klocke P, Leiber F, Stolze M, Niggli U (2017) Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8:1290

    PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R Package Version 2.5–3

  • Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986–992

    PubMed  CAS  Google Scholar 

  • Phelan PL (1997) Soil-management history and the role of plant mineral balance as a determinant of maize susceptibility to the European corn borer. Biol Agric Hortic 15:25–34

    Google Scholar 

  • Phelan PL, Norris KH, Mason JF (1996) Soil-management history and host preference by Ostrinia nubilalis: evidence for plant mineral balance mediating insect-plant interactions. Environ Entomol 25:1329–1336

    Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    PubMed  CAS  Google Scholar 

  • Pineda A, Zheng S, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    PubMed  CAS  Google Scholar 

  • Pineda A, Dicke M, Pieterse CMJ, Pozo MJ (2013) Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Funct Ecol 27:574–586

    Google Scholar 

  • Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22:770–778

    PubMed  CAS  Google Scholar 

  • Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM (2020) Conditioning the soil microbiome through plant-soil feedbacks suppresses an aboveground insect pest. New Phytol 226:595–608

    PubMed  PubMed Central  CAS  Google Scholar 

  • Puga-Freitas R, Blouin M (2015) A review of the effects of soil organisms on plant hormone signalling pathways. Environ Exp Bot 114:104–116

    CAS  Google Scholar 

  • Qiao C, Penton CR, Xiong W, Liu C, Wang R, Liu Z, Xu X, Li R, Shen Q (2019) Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system. Appl Soil Ecol 142:136–146

    Google Scholar 

  • Raaijmakers JM, Mazzola M (2015) Soil immune responses. Science 352:1392–1393

    Google Scholar 

  • Rashid MH, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1816–1826

    PubMed  PubMed Central  Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:15221

    PubMed  Google Scholar 

  • Reinhart KO, Rinella MJ (2016) A common soil handling technique can generate incorrect estimates of soil biota effects on plants. New Phytol 210:786–789

    PubMed  Google Scholar 

  • Richardson AE, Barea J, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rodríguez-Echeverría S, Armas C, Pistón N, Hortal S, Pugnaire FI, De Deyn G (2013) A role for below-ground biota in plant-plant facilitation. J Ecol 101:1420–1428

    Google Scholar 

  • Rohsius C, Matissek R, Lieberei R (2006) Free amino acid amounts in raw cocoas from different origins. Eur Food Res Technol 222:432–438

    CAS  Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    PubMed  CAS  Google Scholar 

  • Saleem M, Hu J, Jousset A (2019) More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168

    Google Scholar 

  • Schoonhoven LM, van Loon Joop JA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Shi W, Ju Y, Bian R, Li L, Joseph S, Mitchell DR, Munroe P, Taherymoosavi S, Pan G (2020) Biochar bound urea boosts plant growth and reduces nitrogen leaching. Sci Total Environ 701:134424

    PubMed  CAS  Google Scholar 

  • Simms EL, Triplett J (1994) Costs and benefits of plant responses to disease: resistance and tolerance. Evolution 48:1973–1985

    PubMed  Google Scholar 

  • Singh JS, Gupta VK (2018) Soil microbial biomass a key soil driver in management of ecosystem functioning. Sci Total Environ 634:497–500

    PubMed  CAS  Google Scholar 

  • Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130–146

    PubMed  PubMed Central  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185

    PubMed  CAS  Google Scholar 

  • Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, Laliberté E (2019) Toward more robust plant-soil feedback research: comment. Ecology 100:e02590

    PubMed  Google Scholar 

  • Tian J, Lou Y, Gao Y, Fang H, Liu S, Xu M, Blagodatskaya E, Kuzyakov Y (2017) Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biol Fertil Soils 53:523–532

    CAS  Google Scholar 

  • Trivedi C, Delgado-Baquerizo M, Hamonts K, Lai K, Reich PB, Singh BK (2019) Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol Biochem 135:267–274

    CAS  Google Scholar 

  • van de Voorde TFJ, van der Putten WH, Bezemer TM (2012) Soil inoculation method determines the strength of plant-soil interactions. Soil Biol Biochem 55:1–6

    Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    PubMed  Google Scholar 

  • van der Heijden MGA, de Bruin S, Luckerhoff L, van Logtestijn RSP, Schlaeppi K (2015) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399

    PubMed  PubMed Central  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vesterlund SR, Helander M, Faeth SH, Hyvonen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47:109–118

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111:5266–5270

    PubMed  CAS  Google Scholar 

  • Wang G, Govinden R, Chenia HY, Ma Y, Guo D, Ren G (2019a) Suppression of Phytophthora blight of pepper by biochar amendment is associated with improved soil bacterial properties. Biol Fertil Soils 55:813–824

    CAS  Google Scholar 

  • Wang M, Ruan W, Kostenko O, Carvalho S, Hannula SE, Mulder PPJ, Bu F, van der Putten WH, Bezemer TM (2019b) Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. New Phytol 221:1478–1491

    PubMed  CAS  Google Scholar 

  • Waring GL, Cobb NS (1992) The impact of plant stress on herbivore population dynamics. In: Bernays EA (ed) Insect-plant interactions. CRC Press, Boca Raton, pp 167–226

    Google Scholar 

  • Wu X, Yu Y, Baerson SR, Song Y, Liang G, Ding C, Niu J, Pan Z, Zeng R (2017) Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown Planthopper Nilaparvata lugens. Front Plant Sci 8:28

    PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Liu M, Jiang L, Chen X, Griffiths BS, Li H, Hu F (2016) Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl Soil Ecol 105:177–186

    Google Scholar 

  • Xiao Z, Jiang L, Chen X, Zhang Y, Defossez E, Hu F, Liu M, Rasmann S (2019) Earthworms suppress thrips attack on tomato plants by concomitantly modulating soil properties and plant chemistry. Soil Biol Biochem 130:23–32

    CAS  Google Scholar 

  • Xu Y, Ge Y, Song J, Rensing C (2020) Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol Fertil Soils 56:249–260

    CAS  Google Scholar 

  • Xue C, Hao Y, Pu X, Penton CR, Wang Q, Zhao M, Zhang B, Ran W, Huang Q, Shen Q, Tiedje JM (2019) Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biol Fertil Soils 55:79–88

    CAS  Google Scholar 

  • Yadav DS, Chander S (2010) Simulation of rice planthopper damage for developing pest management decision support tools. Crop Prot 29:267–276

    Google Scholar 

  • Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM (2018) Species-specifc plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 188:801–811

    PubMed  PubMed Central  Google Scholar 

  • Züst Y, Agrawal AA (2017) Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu Rev Plant Biol 68:513–534

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of China (41771287 and 41877056), the Jiangxi Key R&D program (20181ACH80007) and the Innovative Foreign Experts Introduction Plan for National Key Discipline of Agricultural Resources and Environment (B12009). PK acknowledges support from the Swedish Research Council (Vetenskapsrådet). We thank Nan Jin, Xin Gong and other members of Soil Ecology Lab for their help in the laboratory work and Prof. Wei Huang for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manqiang Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 473 kb)

ESM 2

(XLSX 28 kb)

ESM 3

(PDF 270 kb)

ESM 4

(PDF 147 kb)

ESM 5

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Bonkowski, M., Luo, L. et al. Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity. Biol Fertil Soils 56, 1007–1022 (2020). https://doi.org/10.1007/s00374-020-01473-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01473-w

Keywords

Navigation